Given sides of four small squares. You have to find the side of the smallest square such that it can contain all given 4 squares without overlapping. The side of a square can be up to 10^16.
Examples:
Input: side1 = 2, side2 = 2, side3 = 2, side4 = 2
Output: 4
Input: side1 = 100000000000000, side2 = 123450000000000,
side3 = 987650000000000, side4 = 987654321000000
Output: 1975304321000000
Approach:
It is given that no two squares will overlap. Therefore to find the side of the smallest suitable square, we will find all four sides, when squares will be put in 2 x 2 manner. That is 2 squares will be side by side and rest 2 will be put together.
So we calculate all four side and select one that will be maximum.
Example: When all small squares are of same side.

-

-

-
Example: When all small squares are of different side.
-

-

-
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
long long int max( long long a, long long b)
{
if (a > b)
return a;
else
return b;
}
long long int smallestSide( long long int a[])
{
sort(a, a + 4);
long long side1, side2, side3, side4,
side11, side12, sideOfSquare;
side1 = a[0] + a[3];
side2 = a[1] + a[2];
side3 = a[0] + a[1];
side4 = a[2] + a[3];
side11 = max(side1, side2);
side12 = max(side3, side4);
sideOfSquare = max(side11, side12);
return sideOfSquare;
}
int main()
{
long long int side[4];
cout << "Test Case 1\n" ;
side[0] = 2;
side[1] = 2;
side[2] = 2;
side[3] = 2;
cout << smallestSide(side) << endl;
cout << "\nTest Case 2\n" ;
side[0] = 100000000000000;
side[1] = 123450000000000;
side[2] = 987650000000000;
side[3] = 987654321000000;
cout << smallestSide(side) << endl;
return 0;
}
|
Java
import java.util.Arrays;
class GFG
{
static long max( long a, long b)
{
if (a > b)
return a;
else
return b;
}
static long smallestSide( long a[])
{
Arrays.sort(a);
long side1, side2, side3, side4,
side11, side12, sideOfSquare;
side1 = a[ 0 ] + a[ 3 ];
side2 = a[ 1 ] + a[ 2 ];
side3 = a[ 0 ] + a[ 1 ];
side4 = a[ 2 ] + a[ 3 ];
side11 = max(side1, side2);
side12 = max(side3, side4);
sideOfSquare = max(side11, side12);
return sideOfSquare;
}
public static void main(String[] args)
{
long side[] = new long [ 4 ];
System.out.println( "Test Case 1" );
side[ 0 ] = 2 ;
side[ 1 ] = 2 ;
side[ 2 ] = 2 ;
side[ 3 ] = 2 ;
System.out.println(smallestSide(side));
System.out.println( "\nTest Case 2" );
side[ 0 ] = 100000000000000L;
side[ 1 ] = 123450000000000L;
side[ 2 ] = 987650000000000L;
side[ 3 ] = 987654321000000L;
System.out.println(smallestSide(side));
}
}
|
Python3
def max (a, b):
if (a > b):
return a
else :
return b
def smallestSide(a):
a.sort(reverse = False )
side1 = a[ 0 ] + a[ 3 ]
side2 = a[ 1 ] + a[ 2 ]
side3 = a[ 0 ] + a[ 1 ]
side4 = a[ 2 ] + a[ 3 ]
side11 = max (side1, side2)
side12 = max (side3, side4)
sideOfSquare = max (side11, side12)
return sideOfSquare
if __name__ = = '__main__' :
side = [ 0 for i in range ( 4 )]
print ( "Test Case 1" )
side[ 0 ] = 2
side[ 1 ] = 2
side[ 2 ] = 2
side[ 3 ] = 2
print (smallestSide(side))
print ( "\n" , end = "")
print ( "Test Case 2" )
side[ 0 ] = 100000000000000
side[ 1 ] = 123450000000000
side[ 2 ] = 987650000000000
side[ 3 ] = 987654321000000
print (smallestSide(side))
|
C#
using System;
class GFG
{
static long max( long a, long b)
{
if (a > b)
return a;
else
return b;
}
static long smallestSide( long []a)
{
Array.Sort(a);
long side1, side2, side3, side4,
side11, side12, sideOfSquare;
side1 = a[0] + a[3];
side2 = a[1] + a[2];
side3 = a[0] + a[1];
side4 = a[2] + a[3];
side11 = max(side1, side2);
side12 = max(side3, side4);
sideOfSquare = max(side11, side12);
return sideOfSquare;
}
public static void Main(String[] args)
{
long []side = new long [4];
Console.WriteLine( "Test Case 1" );
side[0] = 2;
side[1] = 2;
side[2] = 2;
side[3] = 2;
Console.WriteLine(smallestSide(side));
Console.WriteLine( "\nTest Case 2" );
side[0] = 100000000000000L;
side[1] = 123450000000000L;
side[2] = 987650000000000L;
side[3] = 987654321000000L;
Console.WriteLine(smallestSide(side));
}
}
|
PHP
<?php
function max1( $a , $b )
{
if ( $a > $b )
return $a ;
else
return $b ;
}
function smallestSide( $a )
{
sort( $a , 0);
$side1 = $a [0] + $a [3];
$side2 = $a [1] + $a [2];
$side3 = $a [0] + $a [1];
$side4 = $a [2] + $a [3];
$side11 = max1( $side1 , $side2 );
$side12 = max1( $side3 , $side4 );
$sideOfSquare = max1( $side11 , $side12 );
return $sideOfSquare ;
}
$side = array ();
echo "Test Case 1\n" ;
$side [0] = 2;
$side [1] = 2;
$side [2] = 2;
$side [3] = 2;
echo smallestSide( $side ) . "\n" ;
echo "\nTest Case 2\n" ;
$side [0] = 100000000000000;
$side [1] = 123450000000000;
$side [2] = 987650000000000;
$side [3] = 987654321000000;
echo smallestSide( $side ) . "\n" ;
?>
|
Javascript
<script>
function max(a , b)
{
if (a > b)
return a;
else
return b;
}
function smallestSide(a)
{
a.sort();
var side1, side2, side3, side4,
side11, side12, sideOfSquare;
side1 = a[0] + a[3];
side2 = a[1] + a[2];
side3 = a[0] + a[1];
side4 = a[2] + a[3];
side11 = max(side1, side2);
side12 = max(side3, side4);
sideOfSquare = max(side11, side12);
return sideOfSquare;
}
var side = Array.from({length: 4}, (_, i) => 0);
document.write( "Test Case 1<br>" );
side[0] = 2;
side[1] = 2;
side[2] = 2;
side[3] = 2;
document.write(smallestSide(side));
document.write( "<br>Test Case 2<br>" );
side[0] = 100000000000000;
side[1] = 123450000000000;
side[2] = 987650000000000;
side[3] = 987654321000000;
document.write(smallestSide(side));
</script>
|
Output:
Test Case 1
4
Test Case 2
1975304321000000
Time Complelxity: O(n log n)
Space Complexity: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
08 May, 2023
Like Article
Save Article