Maximize big when both big and small can be exchanged

Given N Big Candies and M Small Candies. One Big Candy can be bought by paying X small candies. Alternatively, one big candy can be sold for Y small candies. The task is to find the maximum number of big candies that can be bought.

Examples:

Input: N = 3, M = 10, X = 4, Y = 2
Output: 5
8 small candies are exchanged for 2 big candies.

Input: N = 3, M = 10, X = 1, Y = 2
Output: 16
Sell all the initial big candies to get 6 small candies.
Now 16 small candies can be exchanged for 16 big candies.

In first example, Big candies cannot be sold for profit. So, only the remaining small candies can be exchanged for big candies.
In second example, Big candies can be sold for profit.

Approach: If initial big candies can be sold for profit i.e. X < Y then sell the big candies and update the count of small and big candies. Then, sell all of the updated small candies in order to buy big candies.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <iostream>
using namespace std;
  
    // Function to return the maximum big 
    // candies that can be bought
    int max_candies(int bigCandies, 
        int smallCandies,int X, int Y)
    {
        // If initial big candies 
        // can be sold for profit
        if (X < Y) 
        {
            smallCandies += Y * bigCandies;
            bigCandies = 0;
        }
  
        // Update big candies that can be bought
        bigCandies += (smallCandies / X);
  
        return bigCandies;
    }
  
    // Driver code
    int main() 
    {
        int N = 3, M = 10;
        int X = 4, Y = 2;
        cout << (max_candies(N, M, X, Y));
        return 0;
    }

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the maximum big candies
    // that can be bought
    static int max_candies(int bigCandies, int smallCandies,
                           int X, int Y)
    {
        // If initial big candies can be sold for profit
        if (X < Y) {
  
            smallCandies += Y * bigCandies;
            bigCandies = 0;
        }
  
        // Update big candies that can be bought
        bigCandies += (smallCandies / X);
  
        return bigCandies;
    }
  
    // Driver code
    public static void main(String[] args)
    {
        int N = 3, M = 10;
        int X = 4, Y = 2;
  
        System.out.println(max_candies(N, M, X, Y));
    }
}

chevron_right


Python3

# Python3 implementation of the approach

# Function to return the maximum big candies
# that can be bought
def max_candies(bigCandies, smallCandies, X, Y):

# If initial big candies can
# be sold for profit
if(X < Y): smallCandies += Y * bigCandies bigCandies = 0 # Update big candies that can be bought bigCandies += (smallCandies // X) return bigCandies # Driver code N = 3 M = 10 X = 4 Y = 2 print(max_candies(N, M, X, Y)) # This code is contributed by Code_Mech [tabby title="C#"]

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
    // Function to return the maximum 
    // big candies that can be bought
    static int max_candies(int bigCandies,
                        int smallCandies,
                        int X, int Y)
    {
        // If initial big candies
        // can be sold for profit
        if (X < Y)
        {
            smallCandies += Y * bigCandies;
            bigCandies = 0;
        }
  
        // Update big candies that can be bought
        bigCandies += (smallCandies / X);
  
        return bigCandies;
    }
  
    // Driver code
    static public void Main ()
    {
        int N = 3, M = 10;
        int X = 4, Y = 2;
        Console.WriteLine(max_candies(N, M, X, Y));
    }
}
  
// This Code is contributed by ajit... 

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to return the maximum big 
// candies that can be bought
function max_candies($bigCandies
                     $smallCandies, $X, $Y)
{
    // If initial big candies can be
    // sold for profit
    if ($X < $Y
    {
  
        $smallCandies += $Y * $bigCandies;
        $bigCandies = 0;
    }
  
    // Update big candies that can be bought
    $bigCandies += (int)($smallCandies / $X);
  
    return $bigCandies;
}
  
// Driver code
$N = 3;
$M = 10;
$X = 4;
$Y = 2;
  
echo (max_candies($N, $M, $X, $Y));
  
// This code is contributed by akt_mit
?>

chevron_right


Output:

5


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : jit_t, Code_Mech