# Find the number of good permutations

Given two integers N and K. The task is to find the number of good permutations of first N natural numbers. A permutation is called good if there exist at least N – K indices i (1 ≤ i ≤ N) such that Pi = i.

Examples:

Input: N = 4, K = 1
Output: 1
{1, 2, 3, 4} is the only possible good permutation.

Input: N = 5, K = 2
Output: 11

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Let’s iterate on m which is the number of indices such that Pi not equals to i. Obviously, 0 ≤ m ≤ k.
In order to count the number of permutations with fixed m, we need to choose the indices that have the property Pi not equals to i – there are nCm ways to do this then we need to construct a permutation Q for chosen indices such that for every chosen index Qi not equals to i. Permutations with this property are called derangements and the number of derangements of fixed size can be calculated using exhaustive search since m ≤ 4.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the count of good permutations ` `int` `Permutations(``int` `n, ``int` `k) ` `{ ` `    ``// For m = 0, ans is 1 ` `    ``int` `ans = 1; ` ` `  `    ``// If k is greater than 1 ` `    ``if` `(k >= 2) ` `        ``ans += (n) * (n - 1) / 2; ` ` `  `    ``// If k is greater than 2 ` `    ``if` `(k >= 3) ` `        ``ans += (n) * (n - 1) * (n - 2) * 2 / 6; ` ` `  `    ``// If k is greater than 3 ` `    ``if` `(k >= 4) ` `        ``ans += (n) * (n - 1) * (n - 2) * (n - 3) * 9 / 24; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 5, k = 2; ` `    ``cout << Permutations(n, k); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG  ` `{ ` ` `  `// Function to return the count of good permutations ` `static` `int` `Permutations(``int` `n, ``int` `k) ` `{ ` `    ``// For m = 0, ans is 1 ` `    ``int` `ans = ``1``; ` ` `  `    ``// If k is greater than 1 ` `    ``if` `(k >= ``2``) ` `        ``ans += (n) * (n - ``1``) / ``2``; ` ` `  `    ``// If k is greater than 2 ` `    ``if` `(k >= ``3``) ` `        ``ans += (n) * (n - ``1``) * (n - ``2``) * ``2` `/ ``6``; ` ` `  `    ``// If k is greater than 3 ` `    ``if` `(k >= ``4``) ` `        ``ans += (n) * (n - ``1``) * (n - ``2``) * (n - ``3``) * ``9` `/ ``24``; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args)  ` `{ ` `    ``int` `n = ``5``, k = ``2``; ` `    ``System.out.println(Permutations(n, k)); ` `} ` `} ` ` `  `// This code contributed by Rajput-Ji `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the count  ` `# of good permutations  ` `def` `Permutations(n, k):  ` ` `  `    ``# For m = 0, ans is 1  ` `    ``ans ``=` `1` ` `  `    ``# If k is greater than 1  ` `    ``if` `k >``=` `2``:  ` `        ``ans ``+``=` `(n) ``*` `(n ``-` `1``) ``/``/` `2` ` `  `    ``# If k is greater than 2  ` `    ``if` `k >``=` `3``: ` `        ``ans ``+``=` `((n) ``*` `(n ``-` `1``) ``*`  `                ``(n ``-` `2``) ``*` `2` `/``/` `6``) ` ` `  `    ``# If k is greater than 3  ` `    ``if` `k >``=` `4``: ` `        ``ans ``+``=` `((n) ``*` `(n ``-` `1``) ``*` `(n ``-` `2``) ``*` `                      ``(n ``-` `3``) ``*` `9` `/``/` `24``) ` ` `  `    ``return` `ans  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"``: ` ` `  `    ``n, k ``=` `5``, ``2` `    ``print``(Permutations(n, k))  ` `     `  `# This code is contributed ` `# by Rituraj Jain `

## C#

 `// C# implementation of the above approach. ` `using` `System; ` ` `  `class` `GFG  ` `{ ` ` `  `// Function to return the count of good permutations ` `static` `int` `Permutations(``int` `n, ``int` `k) ` `{ ` `    ``// For m = 0, ans is 1 ` `    ``int` `ans = 1; ` ` `  `    ``// If k is greater than 1 ` `    ``if` `(k >= 2) ` `        ``ans += (n) * (n - 1) / 2; ` ` `  `    ``// If k is greater than 2 ` `    ``if` `(k >= 3) ` `        ``ans += (n) * (n - 1) * (n - 2) * 2 / 6; ` ` `  `    ``// If k is greater than 3 ` `    ``if` `(k >= 4) ` `        ``ans += (n) * (n - 1) * (n - 2) * (n - 3) * 9 / 24; ` ` `  `    ``return` `ans; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main()  ` `{ ` `    ``int` `n = 5, k = 2; ` `    ``Console.WriteLine(Permutations(n, k)); ` `} ` `} ` ` `  `/* This code contributed by PrinciRaj1992 */`

## PHP

 `= 2) ` `        ``\$ans` `+= (``\$n``) * (``\$n` `- 1) / 2; ` ` `  `    ``// If k is greater than 2 ` `    ``if` `(``\$k` `>= 3) ` `        ``\$ans` `+= (``\$n``) * (``\$n` `- 1) *  ` `                       ``(``\$n` `- 2) * 2 / 6; ` ` `  `    ``// If k is greater than 3 ` `    ``if` `(``\$k` `>= 4) ` `        ``\$ans` `+= (``\$n``) * (``\$n` `- 1) * (``\$n` `- 2) *  ` `                       ``(``\$n` `- 3) * 9 / 24; ` ` `  `    ``return` `\$ans``; ` `} ` ` `  `// Driver code ` `\$n` `= 5; ``\$k` `= 2; ` `echo``(Permutations(``\$n``, ``\$k``)); ` ` `  `// This code contributed by Code_Mech. ` `?> `

Output:

```11
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.