Number of possible permutations when absolute difference between number of elements to the right and left are given

Given an array of N elements where each element i, the absolute difference between total elements to the right and left of it are given. Find the number of possible ordering of the actual array elements.

Examples:

Input : N = 5, arr[] = {2, 4, 4, 0, 2}
Output : 4
There are four possible orders, as follows:
2, 1, 4, 5, 3
2, 5, 4, 1, 3
3, 1, 4, 5, 2
3, 5, 4, 1, 2

Input : N = 7, arr[] = {6, 4, 0, 2, 4, 0, 2}
Output : 0
No any valid order is possible hence answer is 0.

Approach: Divide the problem into two parts. When N is odd and when N is even.

  • Case 1 : When N is odd.
    Consider N = 7, there are 7 empty spaces and the absolute difference between the elements to the left and right must be like [6 4 2 0 2 4 6]. Observe that the element which is at the middle must have absolute difference 0, while other elements are from 2 to N-1 and each of their counts should be 2. If it doesn’t fulfil it then there is no valid order else for each element i from 2 to N-1 we have 2 ways to fill the spaces, hence total ways will be the product of all the ways.
  • Case 2 : When N is even.
    Consider N = 6, There are 6 spaces and it will be like [5 3 1 1 3 5], where a[i] gives the absolute difference between the number of elements to the left and right. For each a[i] we have 2 ways, hence answer will be the product of all the ways.

Below is the implementation of the approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the number of permutations 
// possible of the original array to satisfy 
// the given absolute differences
int totalways(int* arr, int n)
{
    // To store the count of each
    // a[i] in a map
    unordered_map<int, int> cnt;
    for (int i = 0; i < n; ++i) {
        cnt[arr[i]]++;
    }
  
    // if n is odd
    if (n % 2 == 1) {
        int start = 0, endd = n - 1;
  
        // check the count of each whether
        // it satisfy the given criteria or not
        for (int i = start; i <= endd; i = i + 2) {
            if (i == 0) {
  
                // there is only 1 way
                // for middle element.
                if (cnt[i] != 1) {
                    return 0;
                }
            }
            else {
  
                // for others there are 2 ways.
                if (cnt[i] != 2) {
                    return 0;
                }
            }
        }
  
        // now find total ways
        int ways = 1;
        start = 2, endd = n - 1;
        for (int i = start; i <= endd; i = i + 2) {
            ways = ways * 2;
        }
        return ways;
    }
  
    // When n is even.
    else if (n % 2 == 0) {
  
        // there will be no middle element so
        // for each a[i] there will be 2 ways
        int start = 1, endd = n - 1;
        for (int i = 1; i <= endd; i = i + 2) {
            if (cnt[i] != 2)
                return 0;
        }
        int ways = 1;
        for (int i = start; i <= endd; i = i + 2) {
            ways = ways * 2;
        }
        return ways;
    }
}
  
// Driver Code
int main()
{
    int N = 5;
  
    int arr[N] = { 2, 4, 4, 0, 2 };
  
    cout<<totalways(arr, N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
import java.util.*;
  
class GFG 
{
  
// Function to find the number of permutations 
// possible of the original array to satisfy 
// the given absolute differences
static int totalways(int[] arr, int n)
{
    // To store the count of each
    // a[i] in a map
    HashMap<Integer, 
            Integer>cnt = new HashMap<Integer, 
                                      Integer>();
  
    for (int i = 0 ; i < n; i++)
    {
        if(cnt.containsKey(arr[i]))
        {
            cnt.put(arr[i], cnt.get(arr[i])+1);
        }
        else
        {
            cnt.put(arr[i], 1);
        }
    }
      
    // if n is odd
    if (n % 2 == 1)
    {
        int start = 0, endd = n - 1;
  
        // check the count of each whether
        // it satisfy the given criteria or not
        for (int i = start; i <= endd; i = i + 2
        {
            if (i == 0
            {
  
                // there is only 1 way
                // for middle element.
                if (cnt.get(i) != 1)
                {
                    return 0;
                }
            }
            else 
            {
  
                // for others there are 2 ways.
                if (cnt.get(i) != 2
                {
                    return 0;
                }
            }
        }
  
        // now find total ways
        int ways = 1;
        start = 2; endd = n - 1;
        for (int i = start; i <= endd; i = i + 2
        {
            ways = ways * 2;
        }
        return ways;
    }
  
    // When n is even.
    else if (n % 2 == 0
    {
  
        // there will be no middle element so
        // for each a[i] there will be 2 ways
        int start = 1, endd = n - 1;
        for (int i = 1; i <= endd; i = i + 2
        {
            if (cnt.get(i) != 2)
                return 0;
        }
        int ways = 1;
        for (int i = start; i <= endd; i = i + 2
        {
            ways = ways * 2;
        }
        return ways;
    }
    return Integer.MIN_VALUE;
}
  
// Driver Code
public static void main(String[] args) 
{
    int N = 5;
  
    int []arr = { 2, 4, 4, 0, 2 };
  
    System.out.println(totalways(arr, N));
}
}
  
// This code is contributed by Princi Singh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
  
# Function to find the number of permutations
# possible of the original array to satisfy
# the given absolute differences
def totalways(arr, n):
      
    # To store the count of each
    # a[i] in a map
    cnt = dict()
    for i in range(n):
        cnt[arr[i]] = cnt.get(arr[i], 0) + 1
  
    # if n is odd
    if (n % 2 == 1):
        start, endd = 0, n - 1
  
        # check the count of each whether
        # it satisfy the given criteria or not
        for i in range(start, endd + 1, 2):
            if (i == 0):
  
                # there is only 1 way
                # for middle element.
                if (cnt[i] != 1):
                    return 0
            else:
  
                # for others there are 2 ways.
                if (cnt[i] != 2):
                    return 0
  
        # now find total ways
        ways = 1
        start = 2
        endd = n - 1
        for i in range(start, endd + 1, 2):
            ways = ways * 2
        return ways
  
    # When n is even.
    elif (n % 2 == 0):
  
        # there will be no middle element so
        # for each a[i] there will be 2 ways
        start = 1
        endd = n - 1
        for i in range(1, endd + 1, 2):
            if (cnt[i] != 2):
                return 0
        ways = 1
        for i in range(start, endd + 1, 2):
            ways = ways * 2
        return ways
  
# Driver Code
N = 5
  
arr = [2, 4, 4, 0, 2 ]
  
print(totalways(arr, N))
  
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
using System.Collections.Generic;
  
class GFG 
{
  
// Function to find the number of permutations 
// possible of the original array to satisfy 
// the given absolute differences
static int totalways(int[] arr, int n)
{
    // To store the count of each
    // a[i] in a map
    Dictionary<int,
               int> cnt = new Dictionary<int,
                                         int>();
  
    for (int i = 0 ; i < n; i++)
    {
        if(cnt.ContainsKey(arr[i]))
        {
            cnt[arr[i]] = cnt[arr[i]] + 1;
        }
        else
        {
            cnt.Add(arr[i], 1);
        }
    }
      
    // if n is odd
    if (n % 2 == 1)
    {
        int start = 0, endd = n - 1;
  
        // check the count of each whether
        // it satisfy the given criteria or not
        for (int i = start; i <= endd; i = i + 2) 
        {
            if (i == 0) 
            {
  
                // there is only 1 way
                // for middle element.
                if (cnt[i] != 1)
                {
                    return 0;
                }
            }
            else
            {
  
                // for others there are 2 ways.
                if (cnt[i] != 2) 
                {
                    return 0;
                }
            }
        }
  
        // now find total ways
        int ways = 1;
        start = 2; endd = n - 1;
        for (int i = start; i <= endd; i = i + 2) 
        {
            ways = ways * 2;
        }
        return ways;
    }
  
    // When n is even.
    else if (n % 2 == 0) 
    {
  
        // there will be no middle element so
        // for each a[i] there will be 2 ways
        int start = 1, endd = n - 1;
        for (int i = 1; i <= endd; i = i + 2) 
        {
            if (cnt[i] != 2)
                return 0;
        }
          
        int ways = 1;
        for (int i = start; i <= endd; i = i + 2) 
        {
            ways = ways * 2;
        }
        return ways;
    }
    return int.MinValue;
}
  
// Driver Code
public static void Main(String[] args) 
{
    int N = 5;
  
    int []arr = { 2, 4, 4, 0, 2 };
  
    Console.WriteLine(totalways(arr, N));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Output:

4

Time Complexity : O(N)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.