# Find the area of quadrilateral when diagonal and the perpendiculars to it from opposite vertices are given

Given three integers **d**, **h1**,** h2** where **d** represents the length of the diagonal of a quadrilateral. **h1** and **h2** represents the lengths of the perpendiculars to the given diagonal from the opposite vertices. The task is to find the area of the Quadrilateral.

**Examples:**

Input :d= 6, h1 = 4, h2 = 3Output :21Input :d= 10, h1 = 8, h2 = 10Output :90

**Approach :**

Area of the quadrilateral is the sum of the areas of both triangles. We know that the area of the triangle is 1/2*base*height.

Therefore, the area of a quadrilateral can be calculated as :

Area = 1/2 * d * h1 + 1/2 * d * h2

= 1/2 * d * ( h1 + h2 )

Below is the implementation of the above approach :

## C++

`// C++ program to find the area of quadrilateral` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the area of quadrilateral` `float` `Area(` `int` `d, ` `int` `h1, ` `int` `h2)` `{` ` ` `float` `area;` ` ` `area = 0.5 * d * (h1 + h2);` ` ` `return` `area;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `d = 6, h1 = 4, h2 = 3;` ` ` `cout << ` `"Area of Quadrilateral = "` `<< (Area(d, h1, h2));` ` ` `return` `0;` `}` |

## Java

`// Java program to find the area of quadrilateral` `class` `GFG` `{` ` ` `// Function to find the area of quadrilateral` ` ` `static` `float` `Area(` `int` `d, ` `int` `h1, ` `int` `h2)` ` ` `{` ` ` `float` `area;` ` ` `area = (` `float` `) ` `0.5` `* d * (h1 + h2);` ` ` `return` `area;` ` ` `}` ` ` `// Driver code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `d = ` `6` `, h1 = ` `4` `, h2 = ` `3` `;` ` ` `System.out.println(` `"Area of Quadrilateral = "` `+` ` ` `Area(d, h1, h2));` ` ` `}` `}` `// This code is contributed by Princi Singh` |

## Python3

`# Python3 program to find` `# the area of quadrilateral` `# Function to find the` `# area of quadrilateral` `def` `Area(d, h1, h2):` ` ` `area ` `=` `0.5` `*` `d ` `*` `(h1 ` `+` `h2);` ` ` `return` `area;` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` ` ` `d ` `=` `6` `;` ` ` `h1 ` `=` `4` `;` ` ` `h2 ` `=` `3` `;` ` ` `print` `(` `"Area of Quadrilateral = "` `,` ` ` `(Area(d, h1, h2)));` `# This code is contributed by Rajput-Ji` |

## C#

`// C# program to find the area of quadrilateral` `using` `System;` `class` `GFG` `{` ` ` `// Function to find the area of quadrilateral` `static` `float` `Area(` `int` `d, ` `int` `h1, ` `int` `h2)` `{` ` ` `float` `area;` ` ` `area = (` `float` `)0.5 * d * (h1 + h2);` ` ` `return` `area;` `}` `// Driver code` `public` `static` `void` `Main()` `{` ` ` `int` `d = 6, h1 = 4, h2 = 3;` ` ` ` ` `Console.WriteLine(` `"Area of Quadrilateral = "` `+` ` ` `Area(d, h1, h2));` `}` `}` `// This code is contributed by nidhiva` |

## Javascript

`<script>` `// JavaScript program to find the area of quadrilateral` `// Function to find the area of quadrilateral` `function` `Area(d, h1, h2)` `{` ` ` `let area;` ` ` `area = 0.5 * d * (h1 + h2);` ` ` `return` `area;` `}` `// Driver code` ` ` `let d = 6, h1 = 4, h2 = 3;` ` ` `document.write(` `"Area of Quadrilateral = "` `+ (Area(d, h1, h2)));` `// This code is contributed by Surbhi Tyagi.` `</script>` |

**Output:**

Area of Quadrilateral = 21