Open In App
Related Articles

Find four elements that sum to a given value (4Sum) | Set 1 (n^3 solution)

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array of integers, find all combination of four elements in the array whose sum is equal to a given value X. 

Example:

Input: array = {10, 2, 3, 4, 5, 9, 7, 8}, X = 23
Output: 3 5 7 8
Explanation: Sum of output is equal to 23, i.e. 3 + 5 + 7 + 8 = 23.

Input: array = {1, 2, 3, 4, 5, 9, 7, 8}, X = 16
Output: 1 3 5 7
Explanation: Sum of output is equal to 16, i.e. 1 + 3 + 5 + 7 = 16.

Recommended Practice

4Sum using Four Nested loop

A Naive Solution is to generate all possible quadruples and compare the sum of every quadruple with X. The following code implements this simple method using four nested loops 

C++




// C++ program for naive solution to
// print all combination of 4 elements
// in A[] with sum equal to X
#include <bits/stdc++.h>
using namespace std;
 
/* A naive solution to print all combination
of 4 elements in A[]with sum equal to X */
void findFourElements(int A[], int n, int X)
{
     
// Fix the first element and find other three
for (int i = 0; i < n - 3; i++)
{
    // Fix the second element and find other two
    for (int j = i + 1; j < n - 2; j++)
    {
         
        // Fix the third element and find the fourth
        for (int k = j + 1; k < n - 1; k++)
        {
            // find the fourth
            for (int l = k + 1; l < n; l++)
            if (A[i] + A[j] + A[k] + A[l] == X)
                cout << A[i] <<", " << A[j]
                     << ", " << A[k] << ", " << A[l];
        }
    }
}
}
 
// Driver Code
int main()
{
    int A[] = {10, 20, 30, 40, 1, 2};
    int n = sizeof(A) / sizeof(A[0]);
    int X = 91;
    findFourElements (A, n, X);
    return 0;
}
 
// This code is contributed
// by Akanksha Rai


C




// C implementation of above approach
 
#include <stdio.h>
 
/* A naive solution to print all combination of 4 elements in A[]
  with sum equal to X */
void findFourElements(int A[], int n, int X)
{
  // Fix the first element and find other three
  for (int i = 0; i < n-3; i++)
  {
    // Fix the second element and find other two
    for (int j = i+1; j < n-2; j++)
    {
      // Fix the third element and find the fourth
      for (int k = j+1; k < n-1; k++)
      {
        // find the fourth
        for (int l = k+1; l < n; l++)
           if (A[i] + A[j] + A[k] + A[l] == X)
              printf("%d, %d, %d, %d", A[i], A[j], A[k], A[l]);
      }
    }
  }
}
 
// Driver program to test above function
int main()
{
    int A[] = {10, 20, 30, 40, 1, 2};
    int n = sizeof(A) / sizeof(A[0]);
    int X = 91;
    findFourElements (A, n, X);
    return 0;
}


Java




// Java implementation of above approach
 
class FindFourElements
{
 
    /* A naive solution to print all combination of 4 elements in A[]
       with sum equal to X */
    void findFourElements(int A[], int n, int X)
    {
        // Fix the first element and find other three
        for (int i = 0; i < n - 3; i++)
        {
            // Fix the second element and find other two
            for (int j = i + 1; j < n - 2; j++)
            {
                // Fix the third element and find the fourth
                for (int k = j + 1; k < n - 1; k++)
                {
                    // find the fourth
                    for (int l = k + 1; l < n; l++)
                    {
                        if (A[i] + A[j] + A[k] + A[l] == X)
                            System.out.print(A[i]+" "+A[j]+" "+A[k]
                                                                 +" "+A[l]);
                    }
                }
            }
        }
    }
 
    // Driver program to test above functions
    public static void main(String[] args)
    {
        FindFourElements findfour = new FindFourElements();
        int A[] = {10, 20, 30, 40, 1, 2};
        int n = A.length;
        int X = 91;
        findfour.findFourElements(A, n, X);
    }
}


Python3




#Python 3 implementation of above approach
 
# A naive solution to print all combination
# of 4 elements in A[] with sum equal to X
def findFourElements(A, n, X):
     
    # Fix the first element and find
    # other three
    for i in range(0,n-3):
         
        # Fix the second element and
        # find other two
        for j in range(i+1,n-2):
             
            # Fix the third element
            # and find the fourth
            for k in range(j+1,n-1):
                 
                # find the fourth
                for l in range(k+1,n):
                     
                    if A[i] + A[j] + A[k] + A[l] == X:
                        print ("%d, %d, %d, %d"
                        %( A[i], A[j], A[k], A[l]))
 
# Driver program to test above function
A = [10, 2, 3, 4, 5, 9, 7, 8]
n = len(A)
X = 23
findFourElements (A, n, X)
 
# This code is contributed by shreyanshi_arun


C#




// C# program for naive solution to
// print all combination of 4 elements
// in A[] with sum equal to X
using System;
 
class FindFourElements
{
    void findFourElements(int []A, int n, int X)
    {
        // Fix the first element and find other three
        for (int i = 0; i < n - 3; i++)
        {
            // Fix the second element and find other two
            for (int j = i + 1; j < n - 2; j++)
            {
                // Fix the third element and find the fourth
                for (int k = j + 1; k < n - 1; k++)
                {
                    // find the fourth
                    for (int l = k + 1; l < n; l++)
                    {
                        if (A[i] + A[j] + A[k] + A[l] == X)
                        Console.Write(A[i] + " " + A[j] +
                                " " + A[k] + " " + A[l]);
                    }
                }
            }
        }
    }
 
    // Driver program to test above functions
    public static void Main()
    {
        FindFourElements findfour = new FindFourElements();
        int []A = {10, 20, 30, 40, 1, 2};
        int n = A.Length;
        int X = 91;
        findfour.findFourElements(A, n, X);
    }
}
 
// This code is contributed by nitin mittal


Javascript




<script>
 
// Javascript program for the above approach
 
/* A naive solution to print all combination
of 4 elements in A[]with sum equal to X */
function findFourElements(A, n, X)
{
     
// Fix the first element and find other three
for (let i = 0; i < n - 3; i++)
{
    // Fix the second element and find other two
    for (let j = i + 1; j < n - 2; j++)
    {
         
        // Fix the third element and find the fourth
        for (let k = j + 1; k < n - 1; k++)
        {
            // find the fourth
            for (let l = k + 1; l < n; l++)
            if (A[i] + A[j] + A[k] + A[l] == X)
                document.write(A[i]+", "+A[j]+", "+A[k] +", "+A[l]);
        }
    }
}
}
 
// Driver Code
 
    let A = [10, 20, 30, 40, 1, 2];
    let n = A.length;
    let X = 91;
    findFourElements (A, n, X);
 
</script>


PHP




<?php
  // Php implementation of above approach
 
/* A naive solution to print all combination
of 4 elements in A[] with sum equal to X */
 
function findFourElements($A, $n, $X)
{
    // Fix the first element and find other
    // three
    for ($i = 0; $i < $n-3; $i++)
    {
        // Fix the second element and find
        // other two
        for ($j = $i+1; $j < $n-2; $j++)
        {
            // Fix the third element and
            // find the fourth
            for ($k = $j+1; $k < $n-1; $k++)
            {
                // find the fourth
                for ($l = $k+1; $l < $n; $l++)
                    if ($A[$i] + $A[$j] +
                        $A[$k] + $A[$l] == $X)
                         
                        echo $A[$i], ", " , $A[$j],
                        ", ", $A[$k], ", ", $A[$l];
            }
        }
    }
}
 
// Driver program to test above function
    $A = array (10, 20, 30, 40, 1, 2);
    $n = sizeof($A) ;
    $X = 91;
    findFourElements ($A, $n, $X);
     
// This code is contributed by m_kit
?>


Output

20, 30, 40, 1

Time Complexity: O(n^4)
Auxiliary Space: O(1)

4Sum using Sorting

The time complexity can be improved to O(n^3) with the use of sorting as a preprocessing step, and then using method 1 of this post to reduce a loop.

  • Sort the input array. 
  • Fix the first element as A[i] where i is from 0 to n–3. After fixing the first element of quadruple, fix the second element as A[j] where j varies from i+1 to n-2. Find remaining two elements in O(n) time, using the method 1 of this post 

Below is the implementation of the above approach:

C++




// C++ program for to  print all combination
// of 4 elements in A[] with sum equal to X
#include <bits/stdc++.h>
using namespace std;
 
/* Following function is needed
for library function qsort(). */
int compare(const void* a, const void* b)
{
    return (*(int*)a - *(int*)b);
}
 
/* A sorting based solution to print
all combination of 4 elements in A[]
with sum equal to X */
void find4Numbers(int A[], int n, int X)
{
    int l, r;
 
    // Sort the array in increasing
    // order, using library function
    // for quick sort
    qsort(A, n, sizeof(A[0]), compare);
 
    /* Now fix the first 2 elements
    one by one and find
    the other two elements */
    for (int i = 0; i < n - 3; i++) {
        for (int j = i + 1; j < n - 2; j++) {
            // Initialize two variables as
            // indexes of the first and last
            // elements in the remaining elements
            l = j + 1;
            r = n - 1;
 
            // To find the remaining two
            // elements, move the index
            // variables (l & r) toward each other.
            while (l < r) {
                if (A[i] + A[j] + A[l] + A[r] == X) {
                    cout << A[i] << ", " << A[j] << ", "
                         << A[l] << ", " << A[r];
                    l++;
                    r--;
                }
                else if (A[i] + A[j] + A[l] + A[r] < X)
                    l++;
                else // A[i] + A[j] + A[l] + A[r] > X
                    r--;
            } // end of while
        } // end of inner for loop
    } // end of outer for loop
}
 
/* Driver code */
int main()
{
    int A[] = { 1, 4, 45, 6, 10, 12 };
    int X = 21;
    int n = sizeof(A) / sizeof(A[0]);
    find4Numbers(A, n, X);
    return 0;
}
 
// This code is contributed by rathbhupendra


C




# include <stdio.h>
# include <stdlib.h>
 
/* Following function is needed for library function qsort(). Refer
int compare (const void *a, const void * b)
return ( *(int *)a - *(int *)b ); }
 
/* A sorting based solution to print all combination of 4 elements in A[]
   with sum equal to X */
void find4Numbers(int A[], int n, int X)
{
    int l, r;
 
    // Sort the array in increasing order, using library
    // function for quick sort
    qsort (A, n, sizeof(A[0]), compare);
 
    /* Now fix the first 2 elements one by one and find
       the other two elements */
    for (int i = 0; i < n - 3; i++)
    {
        for (int j = i+1; j < n - 2; j++)
        {
            // Initialize two variables as indexes of the first and last
            // elements in the remaining elements
            l = j + 1;
            r = n-1;
 
            // To find the remaining two elements, move the index
            // variables (l & r) toward each other.
            while (l < r)
            {
                if( A[i] + A[j] + A[l] + A[r] == X)
                {
                   printf("%d, %d, %d, %d", A[i], A[j],
                                           A[l], A[r]);
                   l++; r--;
                }
                else if (A[i] + A[j] + A[l] + A[r] < X)
                    l++;
                else // A[i] + A[j] + A[l] + A[r] > X
                    r--;
            } // end of while
        } // end of inner for loop
    } // end of outer for loop
}
 
/* Driver program to test above function */
int main()
{
    int A[] = {1, 4, 45, 6, 10, 12};
    int X = 21;
    int n = sizeof(A)/sizeof(A[0]);
    find4Numbers(A, n, X);
    return 0;
}


Java




import java.util.Arrays;
 
 
class FindFourElements
{
    /* A sorting based solution to print all combination of 4 elements in A[]
       with sum equal to X */
    void find4Numbers(int A[], int n, int X)
    {
        int l, r;
 
        // Sort the array in increasing order, using library
        // function for quick sort
        Arrays.sort(A);
 
        /* Now fix the first 2 elements one by one and find
           the other two elements */
        for (int i = 0; i < n - 3; i++)
        {
            for (int j = i + 1; j < n - 2; j++)
            {
                // Initialize two variables as indexes of the first and last
                // elements in the remaining elements
                l = j + 1;
                r = n - 1;
 
                // To find the remaining two elements, move the index
                // variables (l & r) toward each other.
                while (l < r)
                {
                    if (A[i] + A[j] + A[l] + A[r] == X)
                    {
                        System.out.println(A[i]+" "+A[j]+" "+A[l]+" "+A[r]);
                        l++;
                        r--;
                    }
                    else if (A[i] + A[j] + A[l] + A[r] < X)
                        l++;
                    else // A[i] + A[j] + A[l] + A[r] > X
                        r--;
                } // end of while
            } // end of inner for loop
        } // end of outer for loop
    }
 
    // Driver program to test above functions
    public static void main(String[] args)
    {
        FindFourElements findfour = new FindFourElements();
        int A[] = {1, 4, 45, 6, 10, 12};
        int n = A.length;
        int X = 21;
        findfour.find4Numbers(A, n, X);
    }
}
 
// This code has been contributed by Mayank Jaiswal


Python 3




# A sorting based solution to print all combination
# of 4 elements in A[] with sum equal to X
def find4Numbers(A, n, X):
 
    # Sort the array in increasing order,
    # using library function for quick sort
    A.sort()
 
    # Now fix the first 2 elements one by
    # one and find the other two elements
    for i in range(n - 3):
        for j in range(i + 1, n - 2):
             
            # Initialize two variables as indexes
            # of the first and last elements in
            # the remaining elements
            l = j + 1
            r = n - 1
 
            # To find the remaining two elements,
            # move the index variables (l & r)
            # toward each other.
            while (l < r):
                if(A[i] + A[j] + A[l] + A[r] == X):
                    print(A[i], ",", A[j], ",",
                          A[l], ",", A[r])
                    l += 1
                    r -= 1
                 
                elif (A[i] + A[j] + A[l] + A[r] < X):
                    l += 1
                else: # A[i] + A[j] + A[l] + A[r] > X
                    r -= 1
 
# Driver Code
if __name__ == "__main__":
     
    A = [1, 4, 45, 6, 10, 12]
    X = 21
    n = len(A)
    find4Numbers(A, n, X)
 
# This code is contributed by ita_c


C#




// C# program for to  print all combination
// of 4 elements in A[] with sum equal to X
using System;
 
class FindFourElements
{
    // A sorting based solution to print all
    // combination of 4 elements in A[] with
    // sum equal to X
    void find4Numbers(int []A, int n, int X)
    {
        int l, r;
 
        // Sort the array in increasing order,
        // using library function for quick sort
        Array.Sort(A);
 
        /* Now fix the first 2 elements one by one
           and find the other two elements */
        for (int i = 0; i < n - 3; i++)
        {
            for (int j = i + 1; j < n - 2; j++)
            {
                // Initialize two variables as indexes of
                // the first and last elements in the
                // remaining elements
                l = j + 1;
                r = n - 1;
 
                // To find the remaining two elements, move the
                // index variables (l & r) toward each other.
                while (l < r)
                {
                    if (A[i] + A[j] + A[l] + A[r] == X)
                    {
                        Console.Write(A[i] + " " + A[j] +
                                " " + A[l] + " " + A[r]);
                        l++;
                        r--;
                    }
                    else if (A[i] + A[j] + A[l] + A[r] < X)
                        l++;
                         
                    else // A[i] + A[j] + A[l] + A[r] > X
                        r--;
                         
                } // end of while
                 
            } // end of inner for loop
             
        } // end of outer for loop
    }
 
    // Driver program to test above functions
    public static void Main()
    {
        FindFourElements findfour = new FindFourElements();
        int []A = {1, 4, 45, 6, 10, 12};
        int n = A.Length;
        int X = 21;
        findfour.find4Numbers(A, n, X);
    }
}
 
// This code has been contributed by nitin mittal


Javascript




<script>
     
    /* A sorting based solution to print all combination of 4 elements in A[]
       with sum equal to X */
    function find4Numbers(A,n,X)
    {
         
        let l, r;
        // Sort the array in increasing order, using library
        // function for quick sort
        A.sort(function(a, b){return a - b});
         
        /* Now fix the first 2 elements one by one and find
           the other two elements */
        for (let i = 0; i < n - 3; i++)
        {
            for (let j = i + 1; j < n - 2; j++)
            {
                // Initialize two variables as indexes of the first and last
                // elements in the remaining elements
                l = j + 1;
                r = n - 1;
  
                // To find the remaining two elements, move the index
                // variables (l & r) toward each other.
                while (l < r)
                {
                    if (A[i] + A[j] + A[l] + A[r] == X)
                    {
                        document.write(A[i]+" "+A[j]+" "+A[l]+" "+A[r]+"<br>");
                        l++;
                        r--;
                    }
                    else if ((A[i] + A[j] + A[l] + A[r]) < X)
                    {   
                        l++;
                    }
                    else // A[i] + A[j] + A[l] + A[r] > X
                    {
                        r--;
                    }
                } // end of while
            }    // end of inner for loop
        }// end of outer for loop
    }
     
    // Driver program to test above functions
    let A= [1, 4, 45, 6, 10, 12];
    let n = A.length;
    let X = 21;
     
    find4Numbers(A, n, X)
     
    // This code is contributed by rag2127
     
</script>


PHP




<?php
// PHP program for to print all
// combination of 4 elements in
// A[] with sum equal to X
 
// A sorting based solution to
// print all combination of 4
// elements in A[] with sum
// equal to X
function find4Numbers($A, $n, $X)
{
    $l; $r;
 
    // Sort the array in increasing
    // order, using library function
    // for quick sort
    sort($A);
 
    // Now fix the first 2 elements
    // one by one and find the other
    // two elements
    for ($i = 0; $i < $n - 3; $i++)
    {
        for ($j = $i + 1; $j < $n - 2; $j++)
        {
            // Initialize two variables
            // as indexes of the first
            // and last elements in the
            // remaining elements
            $l = $j + 1;
            $r = $n - 1;
 
            // To find the remaining two
            // elements, move the index
            // variables (l & r) towards
            // each other.
            while ($l < $r)
            {
                if ($A[$i] + $A[$j] +
                    $A[$l] + $A[$r] == $X)
                {
                    echo $A[$i] , " " , $A[$j] ,
                                  " " , $A[$l] ,
                                  " " , $A[$r];
                    $l++;
                    $r--;
                }
                else if ($A[$i] + $A[$j] +
                         $A[$l] + $A[$r] < $X)
                    $l++;
                     
                // A[i] + A[j] + A[l] + A[r] > X
                else
                    $r--;
                     
            }
        }
    }
}
 
// Driver Code
$A = array(1, 4, 45, 6, 10, 12);
$n = count($A);
$X = 21;
find4Numbers($A, $n, $X);
 
// This code is contributed
// by nitin mittal
?>


Output

1, 4, 6, 10

Time Complexity : O(n^3)
Auxiliary Space: O(1)

This problem can also be solved in O(n^2Logn) complexity. Please refer below post for details
Find four elements that sum to a given value | Set 2 ( O(n^2Logn) Solution)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 11 Sep, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials