Find four factors of N with maximum product and sum equal to N | Set 3

Given an integer N. The task is to find all factors of N and print the product of four factors of N such that:

  1. Sum of the four factors is equal to N.
  2. The product of the four factors is maximum.

If it is not possible to find 4 such factors then print “Not possible”.

Note: All the four factors can be equal to each other to maximize the product and there can be a large number of queries.



Examples:

Input: 24
Output: Product -> 1296
All factors are -> 1 2 3 4 6 8 12 24 
Choose the factor 6 four times,
Therefore, 6+6+6+6 = 24 and product is maximum.

Input: 100
Output: Product -> 390625
All the factors are -> 1 2 4 5 10 10 20 25 50 100 
Choose the factor 25 four times.

The idea is to find factors of all numbers from 1 to N ( which is the maximum value of n ).

  • An answer will be Not possible if the given n is prime.
  • And if the given n is divisible by 4 then answer will be pow(q, 4) where q is a quotient when n is divided by 4.
  • If it is possible to find the answer then, the answer must include third last factor two times. And run a nested loop for other two factors.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find primes
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
  
    return true;
}
  
// Function to find factors
void factors(int N, vector<int>& v[])
{
    for (int i = 2; i < N; i++) {
  
        // run a loop upto square root of that number
        for (int j = 1; j * j <= i; j++) {
            if (i % j == 0) {
  
                // if the n is perfect square
                if (i / j == j)
                    v[i].push_back(j);
  
                // otherwise push it's two divisors
                else {
                    v[i].push_back(j);
                    v[i].push_back(i / j);
                }
            }
        }
  
        // sort the divisors
        sort(v[i].begin(), v[i].end());
    }
}
  
// Function to find max product
int product(int n)
{
    // To store factors of 'n'
    vector<int> v[n + 100];
  
    // find factors
    factors(n + 100, v);
  
    // if it is divisible by 4.
    if (n % 4 == 0) {
        int x = n / 4;
        x *= x;
        return x * x;
    }
  
    else {
  
        // if it is prime
        if (isPrime[n])
            return -1;
  
        // otherwise answer will be possible
        else {
            int ans = -1;
            if (v[n].size() > 2) {
  
                // include last third factor
                int fac = v[n][v[n].size() - 3];
  
                // nested loop to find other two factors
                for (int i = v[n].size() - 1; i >= 0; i--) {
                    for (int j = v[n].size() - 1; j >= 0; j--) {
                        if ((fac * 2) + (v[n][j] + v[n][i]) == n)
                            ans = max(ans, fac * fac * v[n][j] * v[n][i]);
                    }
                }
  
                return ans;
            }
        }
    }
}
  
// Driver code
int main()
{
  
    int n = 24;
  
    // function call
    cout << product(n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
import java.util.*;
import java.lang.*;
import java.io.*;
  
class GFG
{
  
// Function to find primes
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
  
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
  
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
  
    return true;
}
  
static Vector<Vector<Integer> > v = new Vector<Vector<Integer> >();
  
// Function to find factors
static void factors(int N )
{
    for (int i = 2; i < N; i++)
    {
  
        // run a loop upto square root of that number
        for (int j = 1; j * j <= i; j++)
        {
            if (i % j == 0
            {
  
                // if the n is perfect square
                if (i / j == j)
                    v.get(i).add(j);
  
                // otherwise push it's two divisors
                else 
                {
                    v.get(i).add(j);
                    v.get(i).add(i / j);
                }
            }
        }
  
        // sort the divisors
        Collections.sort(v.get(i));
    }
}
  
// Function to find max product
static int product(int n)
{
    // To store factors of 'n'
    v.clear();
    for(int i = 0; i < n + 100; i++)
        v.add(new Vector<Integer>());
  
    // find factors
    factors(n + 100);
  
    // if it is divisible by 4.
    if (n % 4 == 0)  
    {
        int x = n / 4;
        x *= x;
        return x * x;
    }
  
    else
    {
  
        // if it is prime
        if (isPrime(n))
            return -1;
  
        // otherwise answer will be possible
        else 
        {
            int ans = -1;
            if (v.get(n).size() > 2
            {
  
                // include last third factor
                int fac = v.get(n).get(v.get(n).size() - 3);
  
                // nested loop to find other two factors
                for (int i = v.get(n).size() - 1; i >= 0; i--)
                {
                    for (int j = v.get(n).size() - 1; j >= 0; j--) 
                    {
                        if ((fac * 2) + (v.get(n).get(j) + 
                                         v.get(n).get(i)) == n)
                            ans = Math.max(ans, fac * fac * 
                                          v.get(n).get(j) * 
                                          v.get(n).get(i));
                    }
                }
                return ans;
            }
        }
    }
    return 0;
}
  
// Driver code
public static void main(String args[])
{
    int n = 24;
  
    // function call
    System.out.println( product(n));
}
}
  
// This code is contributed by Arnab Kundu

chevron_right


Output:

1296


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : andrew1234