Open In App
Related Articles

Find a pair (n,r) in an integer array such that value of nCr is maximum

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an array of non-negative integers arr[]. The task is to find a pair (n, r) such that value of nCr is maximum possible r < n
 

nCr = n! / (r! * (n – r)!) 


Examples: 
 

Input: arr[] = {5, 2, 3, 4, 1} 
Output: n = 5 and r = 2 
5C3 = 5! / (3! * (5 – 3)!) = 10
Input: arr[] = {0, 2, 3, 4, 1, 6, 8, 9} 
Output: n = 9 and r = 4 
 


 


Naive approach: A simple approach is to consider each (n, r) pair and find the maximum possible value of nCr.
Efficient approach: It is known from combinatorics: 
 

When n is odd: 
nC0 < nC1 ….. < nC(n-1)/2 = nC(n+1)/2 > ….. > nCn-1 > nCn
When n is even: 
nC0 < nC1 ….. < nCn/2 > ….. > nCn-1 > nCn
Also, nCr = nCn-r 
 


It can be observed that nCr will be maximum when n will be maximum and abs(r – middle) will be minimum. The problem now boils down to finding the largest element in arr[] and r such that abs(r – middle) is minimum.
Below is the implementation of the above approach: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the pair (n, r)
// such that nCr is maximum possible
void findPair(int arr[], int n)
{
    // Array should contain atleast 2 elements
    if (n < 2) {
        cout << "-1";
        return;
    }
 
    // Maximum element from the array
    int maximum = *max_element(arr, arr + n);
 
    // temp stores abs(middle - arr[i])
    int temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (int i = 0; i < n; i++) {
 
        // When n is even then middle is (maximum / 2)
        if (abs(middle - arr[i]) < temp && n % 2 == 0) {
            temp = abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (min(abs(middle - arr[i]), abs(middle + 1 - arr[i])) < temp
                 && n % 2 == 1) {
            temp = min(abs(middle - arr[i]), abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
 
    cout << "n = " << maximum
         << " and r = " << r;
}
 
// Driver code
int main()
{
    int arr[] = { 0, 2, 3, 4, 1, 6, 8, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    findPair(arr, n);
 
    return 0;
}

                    

Java

// Java implementation of above approach
class GFG
{
     
// Function to print the pair (n, r)
// such that nCr is maximum possible
static void findPair(int arr[], int n)
{
    // Array should contain atleast 2 elements
    if (n < 2)
    {
        System.out.print("-1");
        return;
    }
 
    // Maximum element from the array
    int maximum = arr[0];
    for(int i = 1; i < n; i++)
    maximum = Math.max(maximum, arr[i]);
 
    // temp stores abs(middle - arr[i])
    int temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (int i = 0; i < n; i++)
    {
 
        // When n is even then middle is (maximum / 2)
        if (Math.abs(middle - arr[i]) < temp && n % 2 == 0)
        {
            temp = Math.abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (Math.min(Math.abs(middle - arr[i]),
                          Math.abs(middle + 1 - arr[i])) <
                                     temp && n % 2 == 1)
        {
            temp = Math.min(Math.abs(middle - arr[i]),
                            Math.abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
    System.out.print( "n = " + maximum + " and r = " + r);
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 0, 2, 3, 4, 1, 6, 8, 9 };
    int n = arr.length;
 
    findPair(arr, n);
}
}
 
// This code is contributed by Arnab Kundu

                    

Python3

# Python3 implementation of the approach
 
# Function to print the pair (n, r)
# such that nCr is maximum possible
 
 
def find_pair(arr):
 
    current_min_diff = float('inf')
    n = max(arr)
    middle = n / 2
 
    for elem in arr:
        diff = abs(elem - middle)
        if diff < current_min_diff:
            current_min_diff = diff
            r = elem
 
    print("n =", n, "and r =", r)
    return r
 
 
# Driver code
if __name__ == "__main__":
    arr = [0, 2, 3, 4, 1, 6, 8, 9]
    # arr = [3,2,1.5]
    find_pair(arr)
 
# This code is contributed by AnkitRai01

                    

C#

// C# implementation of the approach
using System;
     
class GFG
{
     
// Function to print the pair (n, r)
// such that nCr is maximum possible
static void findPair(int []arr, int n)
{
    // Array should contain atleast 2 elements
    if (n < 2)
    {
        Console.Write("-1");
        return;
    }
 
    // Maximum element from the array
    int maximum = arr[0];
    for(int i = 1; i < n; i++)
    maximum = Math.Max(maximum, arr[i]);
 
    // temp stores abs(middle - arr[i])
    int temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (int i = 0; i < n; i++)
    {
 
        // When n is even then middle is (maximum / 2)
        if (Math.Abs(middle - arr[i]) < temp && n % 2 == 0)
        {
            temp = Math.Abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (Math.Min(Math.Abs(middle - arr[i]),
                          Math.Abs(middle + 1 - arr[i])) <
                                   temp && n % 2 == 1)
        {
            temp = Math.Min(Math.Abs(middle - arr[i]),
                            Math.Abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
    Console.Write( "n = " + maximum +
                   " and r = " + r);
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 0, 2, 3, 4, 1, 6, 8, 9 };
    int n = arr.Length;
 
    findPair(arr, n);
}
}
 
// This code is contributed by 29AjayKumar

                    

Javascript

<script>
 
 
// Java  scriptimplementation of above approach
 
     
// Function to print the pair (n, r)
// such that nCr is maximum possible
function findPair(arr,n)
{
    // Array should contain atleast 2 elements
    if (n < 2)
    {
       document.write("-1");
        return;
    }
 
    // Maximum element from the array
    let maximum = arr[0];
    for(let i = 1; i < n; i++)
    maximum = Math.max(maximum, arr[i]);
 
    // temp stores abs(middle - arr[i])
    let temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (let i = 0; i < n; i++)
    {
 
        // When n is even then middle is (maximum / 2)
        if (Math.abs(middle - arr[i]) < temp && n % 2 == 0)
        {
            temp = Math.abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (Math.min(Math.abs(middle - arr[i]),
                          Math.abs(middle + 1 - arr[i])) <
                                     temp && n % 2 == 1)
        {
            temp = Math.min(Math.abs(middle - arr[i]),
                            Math.abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
    document.write( "n = " + maximum + " and r = " + r);
}
 
// Driver code
 
    let arr = [0, 2, 3, 4, 1, 6, 8, 9 ];
    let n = arr.length;
 
    findPair(arr, n);
 
 
     
// This code is contributed by sravan kumar
</script>

                    

Output: 
n = 9 and r = 4

 

Time Complexity: O(n)

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!


Last Updated : 13 Mar, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads
Complete Tutorials