Find if nCr is divisible by the given prime

Given three integers N, R and P where P is prime, the task is to find whether NCR is divisible by P or not.

Examples:

Input: N = 6, R = 2, P = 7
Output: No
6C2 = 15 which is not divisible by 7.



Input: N = 7, R = 2, P = 3
Output: Yes
7C2 = 21 which is divisible by 3.

Approach: We know that NCR = N! / (R! * (N – R)!). Now using Legendre Formula, find the largest power of P which divides any N!, R! and (N -R)! say x1, x2 and x3 respectively.
In order for NCR to be divisible by P, the condition x1 > x2 + x3 must be satisfied.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
  
// Function to return the highest
// power of p that divides n!
// implementing Legendre Formula
int getfactor(int n, int p)
{
    int pw = 0;
  
    while (n) {
        n /= p;
        pw += n;
    }
  
    // Return the highest power of p
    // which divides n!
    return pw;
}
  
// Function that returns true
// if nCr is divisible by p
bool isDivisible(int n, int r, int p)
{
    // Find the highest powers of p
    // that divide n!, r! and (n - r)!
    int x1 = getfactor(n, p);
    int x2 = getfactor(r, p);
    int x3 = getfactor(n - r, p);
  
    // If nCr is divisible by p
    if (x1 > x2 + x3)
        return true;
  
    return false;
}
  
// Driver code
int main()
{
    int n = 7, r = 2, p = 7;
  
    if (isDivisible(n, r, p))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Implementation of above approach
import java.io.*; 
  
class GFG 
  
// Function to return the highest 
// power of p that divides n! 
// implementing Legendre Formula 
static int getfactor(int n, int p) 
    int pw = 0
  
    while (n != 0
    
        n /= p; 
        pw += n; 
    
  
    // Return the highest power of p 
    // which divides n! 
    return pw; 
  
// Function to return N digits 
// number which is divisible by D 
static int isDivisible(int n, int r, int p) 
    // Find the highest powers of p 
    // that divide n!, r! and (n - r)! 
    int x1 = getfactor(n, p); 
    int x2 = getfactor(r, p); 
    int x3 = getfactor(n - r, p); 
  
    // If nCr is divisible by p 
    if (x1 > x2 + x3) 
        return 1
  
    return 0
  
// Driver code 
public static void main (String[] args)
    int n = 7, r = 2, p = 7
  
    if (isDivisible(n, r, p) == 1
        System.out.print("Yes");
    else
        System.out.print("No");
  
  
// This code is contributed by krikti..

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the highest 
# power of p that divides n! 
# implementing Legendre Formula 
def getfactor(n, p) : 
  
    pw = 0
  
    while (n) : 
        n //= p; 
        pw += n; 
      
  
    # Return the highest power of p 
    # which divides n! 
    return pw; 
  
  
# Function that returns true 
# if nCr is divisible by p 
def isDivisible(n, r, p) :
      
    # Find the highest powers of p 
    # that divide n!, r! and (n - r)! 
    x1 = getfactor(n, p); 
    x2 = getfactor(r, p); 
    x3 = getfactor(n - r, p); 
  
    # If nCr is divisible by p 
    if (x1 > x2 + x3) :
        return True
  
    return False
  
  
# Driver code 
if __name__ == "__main__" :
      
    n = 7; r = 2; p = 7
  
    if (isDivisible(n, r, p)) : 
        print("Yes"); 
    else :
        print("No"); 
          
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Implementation of above approach
using System;
  
class GFG
{
      
// Function to return the highest 
// power of p that divides n! 
// implementing Legendre Formula 
static int getfactor(int n, int p) 
    int pw = 0; 
  
    while (n != 0) 
    
        n /= p; 
        pw += n; 
    
  
    // Return the highest power of p 
    // which divides n! 
    return pw; 
  
// Function to return N digits 
// number which is divisible by D 
static int isDivisible(int n, int r, int p) 
    // Find the highest powers of p 
    // that divide n!, r! and (n - r)! 
    int x1 = getfactor(n, p); 
    int x2 = getfactor(r, p); 
    int x3 = getfactor(n - r, p); 
  
    // If nCr is divisible by p 
    if (x1 > x2 + x3) 
        return 1; 
  
    return 0; 
  
// Driver code 
static public void Main ()
{
    int n = 7, r = 2, p = 7; 
  
    if (isDivisible(n, r, p) == 1) 
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
  
  
// This code is contributed by ajit.

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : krikti, jit_t, AnkitRai01