Given a positive integer **n**. The problem is to check if the number is Fibbinary Number or not. Fibbinary numbers are integers whose binary representation contains no consecutive ones.

**Examples :**

Input : 10 Output : Yes Explanation: 1010 is the binary representation of 10 which does not contains any consecutive 1's. Input : 11 Output : No Explanation: 1011 is the binary representation of 11, which contains consecutive 1's.

**Approach:** If (n & (n >> 1)) == 0, then ‘n’ is a fibbinary number Else not.

## C++

// C++ implementation to check whether a number // is fibbinary or not #include <bits/stdc++.h> using namespace std; // function to check whether a number // is fibbinary or not bool isFibbinaryNum(unsigned int n) { // if the number does not contain adjacent ones // then (n & (n >> 1)) operation results to 0 if ((n & (n >> 1)) == 0) return true; // not a fibbinary number return false; } // Driver program to test above int main() { unsigned int n = 10; if (isFibbinaryNum(n)) cout << "Yes"; else cout << "No"; return 0; }

## Java

// Java implementation to check whether // a number is fibbinary or not class GFG { // function to check whether a number // is fibbinary or not static boolean isFibbinaryNum(int n) { // if the number does not contain // adjacent ones then (n & (n >> 1)) // operation results to 0 if ((n & (n >> 1)) == 0) return true; // not a fibbinary number return false; } // Driver program to test above public static void main(String[] args) { int n = 10; if (isFibbinaryNum(n) == true) System.out.println("Yes"); else System.out.println("No"); } } // This code is contributed by // Smitha Dinesh Semwal

## Python3

# Python3 program to check if a number # is fibinnary number or not # function to check whether a number # is fibbinary or not def isFibbinaryNum( n): # if the number does not contain adjacent # ones then (n & (n >> 1)) operation # results to 0 if ((n & (n >> 1)) == 0): return 1 # Not a fibbinary number return 0 # Driver code n = 10 if (isFibbinaryNum(n)): print("Yes") else: print("No") # This code is contributed by sunnysingh

## C#

// C# implementation to check whether // a number is fibbinary or not using System; class GFG { // function to check whether a number // is fibbinary or not static bool isFibbinaryNum(int n) { // if the number does not contain // adjacent ones then (n & (n >> 1)) // operation results to 0 if ((n & (n >> 1)) == 0) return true; // not a fibbinary number return false; } // Driver program to test above public static void Main() { int n = 10; if (isFibbinaryNum(n) == true) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by vt_m.

## PHP

<?php // PHP implementation to check whether // a number is fibbinary or not // function to check whether a number // is fibbinary or not function isFibbinaryNum($n) { // if the number does not contain // adjacent ones then (n & (n >> 1)) // operation results to 0 if (($n & ($n >> 1)) == 0) return true; // not a fibbinary number return false; } // Driver code $n = 10; if (isFibbinaryNum($n)) echo "Yes"; else echo "No"; // This code is contributed by mits ?>

**Output :**

Yes

Time Complexity: O(1).

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

**Practice Tags :**