Given two integers N and M (1 ≤ N, M ≤ 100) denoting the total number of 1s and 0s respectively. The task is to count the number of possible arrangements of these 0s and 1s such that any arrangement has at most X consecutive 1s and Y consecutive 0s (1 ≤ X, Y ≤ 10). As the number of arrangements can be very large, compute the answer with MODULO 109+7.
Examples:
Input: N = 2, M = 3, X = 1, Y = 2
Output: 5
Explanation: All arrangements: 11000, 10100, 10010, 10001, 01100, 01010, 01001, 00110, 00101, 00011.
Out of these arrangements the valid arrangements are: 10100, 10010, 01010, 01001, 00101
So the number of arrangements possible are 5.
Input: N = 2, M = 2, X = 1, Y = 1
Output: 2
Intuition:
- The basic intuition of the problem is to check all possible arrangements using recursion.
- This leads to extremely high time complexity.
- So need of some optimization technique.
- Opting tabulation. This reduces the overall complexity of the problem by drastic factor.
- Using iterative approach over the traditional recursion + memoization makes it even simpler.
Approach: Based on the above intuition this problem can be solved using dynamic programming approach. Follow the steps mentioned below to solve the problem.
- Use a 3D grid for storing the following {count of 1s, count of 0s, represents the last value which was used (0 if A,1 if B)}
- Use nested loop for 1s and 0s.
- At each iteration in nested loop,(i denotes 1s, j denotes 0s)
- If 1s are added to the current sequence, Add the number of sequences formed with i – k, (1 ≤ k ≤ X) 1s and ends with 0s.
- If 0s are added to the current sequence, Add the number of sequences formed with j – k, (1 ≤ k ≤ Y) 0s and ends with 1s.
- This gives the answer to each iteration of sequence with i 1s and j 0s.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
int totalArrangements( int N, int M,
int X, int Y)
{
int dp[N + 1][M + 1][2];
int mod = 1000000007;
for ( int i = 0; i <= N; i++) {
for ( int j = 0; j <= M; j++) {
dp[i][j][0] = 0;
dp[i][j][1] = 0;
}
}
dp[0][0][0] = 1;
dp[0][0][1] = 1;
for ( int i = 0; i <= N; i++) {
for ( int j = 0; j <= M; j++) {
for ( int k = 1; k <= X; k++) {
if (i >= k) {
dp[i][j][1]
+= dp[i - k][j][0];
dp[i][j][1] %= mod;
}
}
for ( int k = 1; k <= Y; k++) {
if (j >= k) {
dp[i][j][0]
+= dp[i][j - k][1];
dp[i][j][0] %= mod;
}
}
}
}
return ((dp[N][M][0] + dp[N][M][1]) % mod);
}
int main()
{
int N = 2, M = 3, X = 1, Y = 2;
cout << totalArrangements(N, M, X, Y);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int totalArrangements( int N, int M,
int X, int Y)
{
int dp[][][] = new int [N + 1 ][M + 1 ][ 2 ];
int mod = 1000000007 ;
for ( int i = 0 ; i <= N; i++) {
for ( int j = 0 ; j <= M; j++) {
dp[i][j][ 0 ] = 0 ;
dp[i][j][ 1 ] = 0 ;
}
}
dp[ 0 ][ 0 ][ 0 ] = 1 ;
dp[ 0 ][ 0 ][ 1 ] = 1 ;
for ( int i = 0 ; i <= N; i++) {
for ( int j = 0 ; j <= M; j++) {
for ( int k = 1 ; k <= X; k++) {
if (i >= k) {
dp[i][j][ 1 ]
+= dp[i - k][j][ 0 ];
dp[i][j][ 1 ] %= mod;
}
}
for ( int k = 1 ; k <= Y; k++) {
if (j >= k) {
dp[i][j][ 0 ]
+= dp[i][j - k][ 1 ];
dp[i][j][ 0 ] %= mod;
}
}
}
}
return ((dp[N][M][ 0 ] + dp[N][M][ 1 ]) % mod);
}
public static void main(String[] args)
{
int N = 2 , M = 3 , X = 1 , Y = 2 ;
System.out.print(totalArrangements(N, M, X, Y));
}
}
|
Python3
def totalArrangements(N, M, X, Y):
dp = [[[ 0 for i in range ( 2 )] for j in range (M + 1 ) ] for k in range (N + 1 )]
mod = 1000000007 ;
for i in range (N + 1 ):
for j in range (M + 1 ):
dp[i][j][ 0 ] = 0 ;
dp[i][j][ 1 ] = 0 ;
dp[ 0 ][ 0 ][ 0 ] = 1 ;
dp[ 0 ][ 0 ][ 1 ] = 1 ;
for i in range (N + 1 ):
for j in range (M + 1 ):
for k in range ( 1 , X + 1 ):
if (i > = k):
dp[i][j][ 1 ] + = dp[i - k][j][ 0 ];
dp[i][j][ 1 ] % = mod;
for k in range ( 1 , Y + 1 ):
if (j > = k):
dp[i][j][ 0 ] + = dp[i][j - k][ 1 ];
dp[i][j][ 0 ] % = mod;
return ((dp[N][M][ 0 ] + dp[N][M][ 1 ]) % mod);
N = 2
M = 3
X = 1
Y = 2 ;
print (totalArrangements(N, M, X, Y));
|
C#
using System;
public class GFG{
static int totalArrangements( int N, int M,
int X, int Y)
{
int [,,] dp = new int [N + 1, M + 1, 2];
int mod = 1000000007;
for ( int i = 0; i <= N; i++) {
for ( int j = 0; j <= M; j++) {
dp[i, j, 0] = 0;
dp[i, j, 1] = 0;
}
}
dp[0, 0, 0] = 1;
dp[0, 0, 1] = 1;
for ( int i = 0; i <= N; i++) {
for ( int j = 0; j <= M; j++) {
for ( int k = 1; k <= X; k++) {
if (i >= k) {
dp[i, j, 1]
+= dp[i - k, j, 0];
dp[i, j, 1] %= mod;
}
}
for ( int k = 1; k <= Y; k++) {
if (j >= k) {
dp[i, j, 0]
+= dp[i, j-k, 1];
dp[i, j, 0] %= mod;
}
}
}
}
return ((dp[N, M, 0] + dp[N, M,1]) % mod);
}
static public void Main ()
{
int N = 2, M = 3, X = 1, Y = 2;
Console.WriteLine(totalArrangements(N, M, X, Y));
}
}
|
Javascript
<script>
const totalArrangements = (N, M, X, Y) => {
let dp = new Array(N + 1).fill(0).map(() => new Array(M + 1).fill(0).map(() => new Array(2)));
let mod = 1000000007;
for (let i = 0; i <= N; i++) {
for (let j = 0; j <= M; j++) {
dp[i][j][0] = 0;
dp[i][j][1] = 0;
}
}
dp[0][0][0] = 1;
dp[0][0][1] = 1;
for (let i = 0; i <= N; i++) {
for (let j = 0; j <= M; j++) {
for (let k = 1; k <= X; k++) {
if (i >= k) {
dp[i][j][1]
+= dp[i - k][j][0];
dp[i][j][1] %= mod;
}
}
for (let k = 1; k <= Y; k++) {
if (j >= k) {
dp[i][j][0]
+= dp[i][j - k][1];
dp[i][j][0] %= mod;
}
}
}
}
return ((dp[N][M][0] + dp[N][M][1]) % mod);
}
let N = 2, M = 3, X = 1, Y = 2;
document.write(totalArrangements(N, M, X, Y));
</script>
|
Time Complexity: O(N * M * (X+Y)).
Auxiliary Space: O(N * M)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
01 Feb, 2022
Like Article
Save Article