Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Expressing factorial n as sum of consecutive numbers

  • Difficulty Level : Hard
  • Last Updated : 07 May, 2021

Given two numbers N and M. Find the number of ways in which factorial N can be expressed as a sum of two or more consecutive numbers. Print the result modulo M.
Examples: 
 

Input : N = 3, M = 7
Output : 1
Explanation:  3! can be expressed 
in one way, i.e. 1 + 2 + 3 = 6. 
Hence 1 % 7 = 1

Input : N = 4, M = 7
Output : 1
Explanation:  4! can be expressed 
in one way, i.e. 7 + 8 + 9 = 24
Hence 1 % 7 = 1

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

A simple solution is to first compute factorial, then count number of ways to represent factorial as sum of consecutive numbers using Count ways to express a number as sum of consecutive numbers. This solution causes overflow.
Below is a better solution to avoid overflow. 
Let us consider that sum of r consecutive numbers be expressed as: 
(a + 1) + (a + 2) + (a + 3) + … + (a + r), which simplifies as (r * (r + 2*a + 1)) / 2 
Hence, (a + 1) + (a + 2) + (a + 3) + … + (a + r) = (r * (r + 2*a + 1)) / 2. Since the above expression is equal to factorial N, we write it as 
2 * N! = r * (r + 2*a + 1) 
Instead of counting all the pairs (r, a), we will count all pairs (r, r + 2*a + 1). Now, we are just counting all ordered pairs (X, Y) with XY = 2 * N! where X < Y and X, Y have different parity, that means if (r) is even, (r + 2*a + 1) is odd or if (r) is odd then (r + 2*a + 1) is even. This is equivalent to finding the odd divisors of 2 * N! which will be same as odd divisors of N!. 
For counting the number of divisors in N!, we calculate the power of primes in factorization and total count of divisors become (p1 + 1) * (p2 + 1) * … * (pn + 1). To calculate the largest power of a prime in N!, we will use legendre’s formula
\nu _{p}(n!)=\sum _{{i=1}}^{{\infty }}\left\lfloor {\frac {n}{p^{i}}}\right\rfloor,
Below is the implementation of the above approach. 
 

C++




// CPP program to count number of
// ways we can express a factorial
// as sum of consecutive numbers
#include <bits/stdc++.h>
using namespace std;
 
#define MAX 50002
 
vector<int> primes;
 
// sieve of Eratosthenes to compute
// the prime numbers
void sieve()
{
    bool isPrime[MAX];
    memset(isPrime, true, sizeof(isPrime));
 
    for (int p = 2; p * p < MAX; p++) {
        if (isPrime[p] == true) {
            for (int i = p * 2; i < MAX; i += p)
                isPrime[i] = false;
        }
    }
 
    // Store all prime numbers
    for (int p = 2; p < MAX; p++)
        if (isPrime[p])
            primes.push_back(p);
}
 
// function to calculate the largest
// power of a prime in a number
long long int power(long long int x,
                    long long int y)
{
    long long int count = 0;
    long long int z = y;
    while (x >= z) {
        count += (x / z);
        z *= y;
    }
    return count;
}
 
// Modular multiplication to avoid
// the overflow of multiplication
// Please see below for details
long long int modMult(long long int a,
                      long long int b,
                      long long int mod)
{
    long long int res = 0;
    a = a % mod;
    while (b > 0) {
        if (b % 2 == 1)
            res = (res + a) % mod;
        a = (a * 2) % mod;
        b /= 2;
    }
    return res % mod;
}
 
// Returns count of ways to express n!
// as sum of consecutives.
long long int countWays(long long int n,
                        long long int m)
{
    long long int ans = 1;
 
    // We skip 2 (First prime) as we need to
    // consider only odd primes
    for (int i = 1; i < primes.size(); i++) {
 
        // compute the largest power of prime
        long long int powers = power(n, primes[i]);
 
        // if the power of current prime number
        // is zero in N!, power of primes greater
        // than current prime number will also
        // be zero, so break out from the loop
        if (powers == 0)
            break;
 
        // multiply the result at every step
        ans = modMult(ans, powers + 1, m) % m;
    }
 
    // subtract 1 to exclude the case of 1
    // being an odd divisor
    if (((ans - 1) % m) < 0)
        return (ans - 1 + m) % m;
    else
        return (ans - 1) % m;
}
 
// Driver Code
int main()
{
    sieve();
    long long int n = 4, m = 7;
    cout << countWays(n, m);
    return 0;
}

Java




// Java program to count number of
// ways we can express a factorial
// as sum of consecutive numbers
import java.util.*;
 
class GFG {
     
    static int MAX = 50002;
    static ArrayList<Integer> primes
                 = new ArrayList<Integer>();
                  
    // sieve of Eratosthenes to compute
    // the prime numbers
    public static void sieve()
    {
         
        boolean isPrime[] = new boolean[MAX];
         
        for(int i = 0; i < MAX; i++)
            isPrime[i] = true;
             
        for (int p = 2; p * p < MAX; p++) {
            if (isPrime[p] == true) {
                for (int i = p * 2; i < MAX; i += p)
                    isPrime[i] = false;
            }
        }
         
        // Store all prime numbers
        for (int p = 2; p < MAX; p++)
            if (isPrime[p] == true)
                primes.add(p);
    }
         
    // function to calculate the largest
    // power of a prime in a number
    public static int power(int x, int y)
    {
        int count = 0;
        int z = y;
        while (x >= z) {
            count += (x / z);
            z *= y;
        }
         
        return count;
    }
     
    // Modular multiplication to avoid
    // the overflow of multiplication
    // Please see below for details
    public static int modMult(int a, int b, int mod)
    {
        int res = 0;
        a = a % mod;
        while (b > 0) {
            if (b % 2 == 1)
                res = (res + a) % mod;
            a = (a * 2) % mod;
            b /= 2;
        }
         
        return res % mod;
    }
     
    // Returns count of ways to express n!
    // as sum of consecutives.
    public static int countWays(int n, int m)
    {
        int ans = 1;
     
        // We skip 2 (First prime) as we need to
        // consider only odd primes
        for (int i = 1; i < primes.size(); i++) {
     
            // compute the largest power of prime
            int powers = power(n, primes.get(i));
     
            // if the power of current prime number
            // is zero in N!, power of primes greater
            // than current prime number will also
            // be zero, so break out from the loop
            if (powers == 0)
                break;
     
            // multiply the result at every step
            ans = modMult(ans, powers + 1, m) % m;
        }
     
        // subtract 1 to exclude the case of 1
        // being an odd divisor
        if (((ans - 1) % m) < 0)
            return (ans - 1 + m) % m;
        else
            return (ans - 1) % m;
    }
     
    //Driver function
    public static void main (String[] args) {
         
        sieve();
         
        int n = 4, m = 7;
         
        System.out.println(countWays(n,m));
    }
}
 
// This code is contributed by akash1295.

Python 3




# Python 3 program to count number of
# ways we can express a factorial
# as sum of consecutive numbers
MAX = 50002;
 
primes = []
 
# sieve of Eratosthenes to compute
# the prime numbers
def sieve():
    isPrime = [True]*(MAX)
     
    p = 2
    while p * p < MAX :
        if (isPrime[p] == True):
            for i in range( p * 2,MAX, p):
                isPrime[i] = False
        p+=1
 
    # Store all prime numbers
    for p in range( 2,MAX):
        if (isPrime[p]):
            primes.append(p)
 
# function to calculate the largest
# power of a prime in a number
def power( x, y):
 
    count = 0
    z = y
    while (x >= z):
        count += (x // z)
        z *= y
     
    return count
 
# Modular multiplication to avoid
# the overflow of multiplication
# Please see below for details
def modMult(a, b,mod):
    res = 0
    a = a % mod
    while (b > 0):
        if (b % 2 == 1):
            res = (res + a) % mod
        a = (a * 2) % mod
        b //= 2
     
    return res % mod
 
# Returns count of ways to express n!
# as sum of consecutives.
def countWays(n,m):
    ans = 1
 
    # We skip 2 (First prime) as we need to
    # consider only odd primes
    for i in range(1,len(primes)):
 
        # compute the largest power of prime
        powers = power(n, primes[i])
 
        # if the power of current prime number
        # is zero in N!, power of primes greater
        # than current prime number will also
        # be zero, so break out from the loop
        if (powers == 0):
            break
 
        # multiply the result at every step
        ans = modMult(ans, powers + 1, m) % m
     
 
    # subtract 1 to exclude the case of 1
    # being an odd divisor
    if (((ans - 1) % m) < 0):
        return (ans - 1 + m) % m
    else:
        return (ans - 1) % m
 
# Driver Code
if __name__ == "__main__":
    sieve()
    n = 4
    m = 7
    print(countWays(n, m))
     
# This code is contributed by ChitraNayal

C#




// C# program to count number of
// ways we can express a factorial
// as sum of consecutive numbers
using System ;
using System.Collections;
 
class GFG {
     
    static int MAX = 50002;
    static ArrayList primes = new ArrayList ();
                 
    // sieve of Eratosthenes to compute
    // the prime numbers
    public static void sieve()
    {
         
        bool []isPrime = new bool[MAX];
         
        for(int i = 0; i < MAX; i++)
            isPrime[i] = true;
             
        for (int p = 2; p * p < MAX; p++) {
            if (isPrime[p] == true) {
                for (int i = p * 2; i < MAX; i += p)
                    isPrime[i] = false;
            }
        }
         
        // Store all prime numbers
        for (int p = 2; p < MAX; p++)
            if (isPrime[p] == true)
                primes.Add(p);
    }
         
    // function to calculate the largest
    // power of a prime in a number
    public static int power_prime(int x, int y)
    {
        int count = 0;
        int z = y;
        while (x >= z) {
            count += (x / z);
            z *= y;
        }
         
        return count;
    }
     
    // Modular multiplication to avoid
    // the overflow of multiplication
    // Please see below for details
    public static int modMult(int a, int b, int mod)
    {
        int res = 0;
        a = a % mod;
        while (b > 0) {
            if (b % 2 == 1)
                res = (res + a) % mod;
            a = (a * 2) % mod;
            b /= 2;
        }
         
        return res % mod;
    }
     
    // Returns count of ways to express n!
    // as sum of consecutives.
    public static int countWays(int n, int m)
    {
        int ans = 1;
     
        // We skip 2 (First prime) as we need to
        // consider only odd primes
        for (int i = 1; i < primes.Count; i++) {
     
            // compute the largest power of prime
            int powers = power_prime(n, Convert.ToInt32(primes[i]));
     
            // if the power of current prime number
            // is zero in N!, power of primes greater
            // than current prime number will also
            // be zero, so break out from the loop
            if (powers == 0)
                break;
     
            // multiply the result at every step
            ans = modMult(ans, powers + 1, m) % m;
        }
     
        // subtract 1 to exclude the case of 1
        // being an odd divisor
        if (((ans - 1) % m) < 0)
            return (ans - 1 + m) % m;
        else
            return (ans - 1) % m;
    }
     
    //Driver function
    public static void Main () {
         
        sieve();
         
        int n = 4, m = 7;
         
        Console.WriteLine(countWays(n,m));
    }
}
 
// This code is contributed by Ryuga

Javascript




<script>
// Javascript program to count number of
// ways we can express a factorial
// as sum of consecutive numbers   
    let MAX = 50002;
    let primes = [];
     
    // sieve of Eratosthenes to compute
    // the prime numbers
    function sieve()
    {
        let isPrime = new Array(MAX);
        for(let i = 0; i < MAX; i++)
            isPrime[i] = true;
        for (let p = 2; p * p < MAX; p++)
        {
            if (isPrime[p] == true)
            {
                for (let i = p * 2; i < MAX; i += p)
                    isPrime[i] = false;
            }
        }
           
        // Store all prime numbers
        for (let p = 2; p < MAX; p++)
            if (isPrime[p] == true)
                primes.push(p);
    }
     
    // function to calculate the largest
    // power of a prime in a number
    function power(x,y)
    {
        let count = 0;
        let z = y;
        while (x >= z) {
            count += Math.floor(x / z);
            z *= y;
        }
           
        return count;
    }
     
    // Modular multiplication to avoid
    // the overflow of multiplication
    // Please see below for details
    function  modMult(a,b,mod)
    {
        let res = 0;
        a = a % mod;
        while (b > 0) {
            if (b % 2 == 1)
                res = (res + a) % mod;
            a = (a * 2) % mod;
            b = Math.floor(b/2);
        }
           
        return res % mod;
    }
     
    // Returns count of ways to express n!
    // as sum of consecutives.
    function countWays(n,m)
    {
        let ans = 1;
       
        // We skip 2 (First prime) as we need to
        // consider only odd primes
        for (let i = 1; i < primes.length; i++) {
       
            // compute the largest power of prime
            let powers = power(n, primes[i]);
       
            // if the power of current prime number
            // is zero in N!, power of primes greater
            // than current prime number will also
            // be zero, so break out from the loop
            if (powers == 0)
                break;
       
            // multiply the result at every step
            ans = modMult(ans, powers + 1, m) % m;
        }
       
        // subtract 1 to exclude the case of 1
        // being an odd divisor
        if (((ans - 1) % m) < 0)
            return (ans - 1 + m) % m;
        else
            return (ans - 1) % m;
    }
     
    //Driver function
    sieve();         
    let n = 4, m = 7;
    document.write(countWays(n,m));
     
    // This code is contributed by avanitrachhadiya2155
</script>
Output: 
1

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :