Open In App
Related Articles

Count ways to express a number as sum of consecutive numbers

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer N, the task is to find the number of ways to represent this number as a sum of 2 or more consecutive natural numbers.

Examples: 
 

Input: N = 15 
Output:
Explanation: 
15 can be represented as: 
 

  1. 1 + 2 + 3 + 4 + 5
  2. 4 + 5 + 6
  3. 7 + 8

Input: N = 10 
Output:
 

 

Recommended Practice

 

Approach: The idea is to represent N as a sequence of length L+1 as: 
N = a + (a+1) + (a+2) + .. + (a+L) 
=> N = (L+1)*a + (L*(L+1))/2 
=> a = (N- L*(L+1)/2)/(L+1) 
We substitute the values of L starting from 1 till L*(L+1)/2 < N 
If we get ‘a’ as a natural number then the solution should be counted.
 

 

?list=PLM68oyaqFM7Q-sv3gA5xbzfgVkoQ0xDrW
 

C++




// C++ program to count number of ways to express
// N as sum of consecutive numbers.
#include <bits/stdc++.h>
using namespace std;
 
long int countConsecutive(long int N)
{
    // constraint on values of L gives us the
    // time Complexity as O(N^0.5)
    long int count = 0;
    for (long int L = 1; L * (L + 1) < 2 * N; L++) {
        double a = (1.0 * N - (L * (L + 1)) / 2) / (L + 1);
        if (a - (int)a == 0.0)
            count++;
    }
    return count;
}
 
// Driver Code
int main()
{
    long int N = 15;
    cout << countConsecutive(N) << endl;
    N = 10;
    cout << countConsecutive(N) << endl;
    return 0;
}


Java




// A Java program to count number of ways
// to express N as sum of consecutive numbers.
public class SumConsecutiveNumber {
    // Utility method to compute number of ways
    // in which N can be represented as sum of
    // consecutive number
    static int countConsecutive(int N)
    {
        // constraint on values of L gives us the
        // time Complexity as O(N^0.5)
        int count = 0;
        for (int L = 1; L * (L + 1) < 2 * N; L++) {
            double a = (double)((1.0 * N - (L * (L + 1)) / 2) / (L + 1));
            if (a - (int)a == 0.0)
                count++;
        }
        return count;
    }
 
    // Driver code to test above function
    public static void main(String[] args)
    {
        int N = 15;
        System.out.println(countConsecutive(N));
        N = 10;
        System.out.println(countConsecutive(N));
    }
}
// This code is contributed by Sumit Ghosh


Python3




# Python program to count number of ways to
# express N as sum of consecutive numbers.
 
def countConsecutive(N):
     
    # constraint on values of L gives us the
    # time Complexity as O(N ^ 0.5)
    count = 0
    L = 1
    while( L * (L + 1) < 2 * N):
        a = (1.0 * N - (L * (L + 1) ) / 2) / (L + 1)
        if (a - int(a) == 0.0):
            count += 1
        L += 1
    return count
 
# Driver code
 
N = 15
print (countConsecutive(N))
N = 10
print (countConsecutive(N))
 
# This code is contributed by Sachin Bisht


C#




// A C# program to count number of
// ways to express N as sum of
// consecutive numbers.
using System;
 
public class GFG {
 
    // Utility method to compute
    // number of ways in which N
    // can be represented as sum
    // of consecutive number
    static int countConsecutive(int N)
    {
 
        // constraint on values of L
        // gives us the time
        // Complexity as O(N^0.5)
        int count = 0;
        for (int L = 1; L * (L + 1)
                        < 2 * N;
             L++) {
            double a = (double)((1.0
                                   * N
                               - (L * (L + 1))
                                     / 2)
                              / (L + 1));
 
            if (a - (int)a == 0.0)
                count++;
        }
 
        return count;
    }
 
    // Driver code to test above
    // function
    public static void Main()
    {
        int N = 15;
        Console.WriteLine(
            countConsecutive(N));
 
        N = 10;
        Console.Write(
            countConsecutive(N));
    }
}
 
// This code is contributed by
// nitin mittal.


PHP




<?php
// PHP program to count number
// of ways to express N as sum
// of consecutive numbers.
 
function countConsecutive($N)
{
    // constraint on values
    // of L gives us the
    // time Complexity as O(N^0.5)
    $count = 0;
    for ($L = 1;
         $L * ($L + 1) < 2 * $N; $L++)
    {
        $a = (int)(1.0 * $N - ($L *
             (int)($L + 1)) / 2) / ($L + 1);
        if ($a - (int)$a == 0.0)
            $count++;
    }
    return $count;
}
 
// Driver Code
$N = 15;
echo countConsecutive($N), "\n";
$N = 10;
echo countConsecutive($N), "\n";
 
// This code is contributed by ajit
?>


Javascript




<script>
    // A Javascript program to count number of
    // ways to express N as sum of
    // consecutive numbers.
     
    // Utility method to compute
    // number of ways in which N
    // can be represented as sum
    // of consecutive number
    function countConsecutive(N)
    {
           
        // constraint on values of L
        // gives us the time
        // Complexity as O(N^0.5)
        let count = 0;
        for (let L = 1; L * (L + 1) < 2 * N; L++)
        {
            let a = ((1.0 * N-(L * (L + 1)) / 2) / (L + 1));
                        
            if (a - parseInt(a, 10) == 0.0)
                count++;    
        }
           
        return count;
    }
     
    let N = 15;
    document.write(countConsecutive(N) + "</br>");
 
    N = 10;
    document.write(countConsecutive(N));
     
</script>


 
 

Output: 

3
1

 

 

Time Complexity: O(N^0.5)

Auxiliary Space: O(1)

 

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. 
See your article appearing on the GeeksforGeeks main page and help other Geeks. 
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 23 Jun, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials