Count ways to divide circle using N non-intersecting chords

Given a number N, find the number of ways you can draw N chords in a circle with 2*N points such that no 2 chords intersect.
Two ways are different if there exists a chord which is present in one way and not in other.

Examples:

Input : N = 2
Output : 2
Explanation: If points are numbered 1 to 4 in 
clockwise direction, then different ways to 
draw chords are:
{(1-2), (3-4)} and {(1-4), (2-3)}


Input : N = 1
Output : 1
Explanation: Draw a chord between points 1 and 2.



If we draw a chord between any two points, can you observe the current set of points getting broken into two smaller sets S_1 and S_2. If we draw a chord from a point in S_1 to a point in S_2, it will surely intersect the chord we’ve just drawn.
So, we can arrive at a recurrence that Ways(n) = sum[i = 0 to n-1] { Ways(i)*Ways(n-i-1) }.
Here we iterate over i, assuming that size of one of the sets is i and size of another set automatically is (n-i-1) since we’ve already used a pair of points and i pair of points in one set.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// cpp code to count ways 
// to divide circle using
// N non-intersecting chords.
#include <bits/stdc++.h>
using namespace std;
  
int chordCnt( int A){
  
    // n = no of points required
    int n = 2 * A;
      
    // dp array containing the sum
    int dpArray[n + 1]={ 0 };
    dpArray[0] = 1;
    dpArray[2] = 1;
    for (int i=4;i<=n;i+=2){
        for (int j=0;j<i-1;j+=2){ 
              
          dpArray[i] +=
            (dpArray[j]*dpArray[i-2-j]);
        }
    
  
    // returning the required number
    return dpArray[n];
}
// Driver function
int main()
{
  
    int N;
    N = 2;
cout<<chordCnt( N)<<'\n';
    N = 1;
cout<<chordCnt( N)<<'\n';
    N = 4;
cout<<chordCnt( N)<<'\n';
    return 0;
}
  
// This code is contributed by Gitanjali.

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java code to count ways
// to divide circle using
// N non-intersecting chords.
import java.io.*;
  
class GFG {
    static int chordCnt(int A)
    {
  
        // n = no of points required
        int n = 2 * A;
  
        // dp array containing the sum
        int[] dpArray = new int[n + 1];
        dpArray[0] = 1;
        dpArray[2] = 1;
        for (int i = 4; i <= n; i += 2) {
            for (int j = 0; j < i - 1; j += 2
            {
                dpArray[i] += (dpArray[j] * 
                              dpArray[i - 2 - j]);
            }
        }
  
        // returning the required number
        return dpArray[n];
    }
    public static void main(String[] args)
    {
        int N;
        N = 2;
        System.out.println(chordCnt(N));
        N = 1;
        System.out.println(chordCnt(N));
        N = 4;
        System.out.println(chordCnt(N));
    }
}
  
// This code is contributed by Gitanjali.

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# python code to count ways to divide
# circle using N non-intersecting chords.
def chordCnt( A):
  
    # n = no of points required
    n = 2 * A
  
    # dp array containing the sum
    dpArray = [0]*(n + 1)
    dpArray[0] = 1
    dpArray[2] = 1
    for i in range(4, n + 1, 2):
        for j in range(0, i-1, 2):
            dpArray[i] += (dpArray[j]*dpArray[i-2-j])
  
    # returning the required number
    return int(dpArray[n])
  
# driver code
N = 2
print(chordCnt( N))
N = 1
print(chordCnt( N))
N = 4
print(chordCnt( N))

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# code to count ways to divide 
// circle using N non-intersecting chords.
using System;
  
class GFG {
      
    static int chordCnt(int A)
    {
        // n = no of points required
        int n = 2 * A;
  
        // dp array containing the sum
        int[] dpArray = new int[n + 1];
        dpArray[0] = 1;
        dpArray[2] = 1;
          
        for (int i = 4; i <= n; i += 2) 
        {
            for (int j = 0; j < i - 1; j += 2)
            {
                dpArray[i] += (dpArray[j] * dpArray[i - 2 - j]);
            }
        }
  
        // returning the required number
        return dpArray[n];
    }
      
    // Driver code
    public static void Main()
    {
        int N;
        N = 2;
        Console.WriteLine(chordCnt(N));
        N = 1;
        Console.WriteLine(chordCnt(N));
        N = 4;
        Console.WriteLine(chordCnt(N));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP code to count ways 
// to divide circle using 
// N non-intersecting chords. 
function chordCnt( $A)
  
    // n = no of points required 
    $n = 2 * $A
      
    // dp array containing the sum 
    $dpArray = array_fill(0, $n + 1, 0);
    $dpArray[0] = 1; 
    $dpArray[2] = 1; 
    for ($i = 4; $i <= $n; $i += 2)
    
        for ($j = 0; $j < $i - 1; $j += 2)
        
              
            $dpArray[$i] += ($dpArray[$j] * 
                             $dpArray[$i - 2 - $j]); 
        
    
  
    // returning the required number 
    return $dpArray[$n]; 
  
// Driver Code 
$N = 2; 
echo chordCnt($N), "\n"
$N = 1; 
echo chordCnt($N), "\n"
$N = 4; 
echo chordCnt($N), "\n"
      
// This code is contributed by Ryuga 
?>

chevron_right


Output:

2
1
14


My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01