Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Count triplets (a, b, c) such that a + b, b + c and a + c are all divisible by K

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given two integers ‘N’ and ‘K’, the task is to count the number of triplets (a, b, c) of positive integers not greater than ‘N’ such that ‘a + b’, ‘b + c’, and ‘c + a’ are all multiples of ‘K’. Note that ‘a’, ‘b’ and ‘c’ may or may not be the same in a triplet.

Examples: 

Input: N = 2, K = 2 
Output: 2
Explanation: All possible triplets are  (1, 1, 1) and (2, 2, 2)

Input: N = 3, K = 2 
Output: 9  

Approach:

Run three nested loops from ‘1’ to ‘N’ and check whether i+j, j+l, and l+i are all divisible by ‘K’. Increment the count if the condition is true.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include<iostream>
using namespace std;
class gfg
{
    // Function returns the
    // count of the triplets
    public:
    long count_triples(int n, int k);
};
  
    long gfg :: count_triples(int n, int k)
    {
        int i = 0, j = 0, l = 0;
        int count = 0;
 
        // iterate for all
        // triples pairs (i, j, l)
        for (i = 1; i <= n; i++)
        {
            for (j = 1; j <= n; j++)
            {
                for (l = 1; l <= n; l++)
                {
 
                    // if the condition
                    // is satisfied
                    if ((i + j) % k == 0
                        && (i + l) % k == 0
                        && (j + l) % k == 0)
                        count++;
                }
            }
        }
        return count;
    }
 
    // Driver code
    int main()
    {
        gfg g;
        int n = 3;
        int k = 2;
        long ans = g.count_triples(n, k);
        cout << ans;
    }
//This code is contributed by Soumik

Java




// Java implementation of the approach
class GFG {
 
    // Function returns the
    // count of the triplets
    static long count_triples(int n, int k)
    {
        int i = 0, j = 0, l = 0;
        int count = 0;
 
        // iterate for all
        // triples pairs (i, j, l)
        for (i = 1; i <= n; i++) {
            for (j = 1; j <= n; j++) {
                for (l = 1; l <= n; l++) {
 
                    // if the condition
                    // is satisfied
                    if ((i + j) % k == 0
                        && (i + l) % k == 0
                        && (j + l) % k == 0)
                        count++;
                }
            }
        }
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 3;
        int k = 2;
        long ans = count_triples(n, k);
        System.out.println(ans);
    }
}

Python3




# Python3 implementation of the
# above approach
def count_triples(n, k):
     
    count, i, j, l = 0, 0, 0, 0
 
    # Iterate for all triples
    # pairs (i, j, l)
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            for l in range(1, n + 1):
                 
                # If the condition
                # is satisfied
                if ((i + j) % k == 0 and
                    (i + l) % k == 0 and
                    (j + l) % k == 0):
                    count += 1
         
    return count
 
# Driver code
if __name__ == "__main__":
     
    n, k = 3, 2
    ans = count_triples(n, k)
    print(ans)
     
# This code is contributed
# by Rituraj Jain

C#




// C# implementation of the approach
 
using System;
 
class GFG {
  
    // Function returns the
    // count of the triplets
    static long count_triples(int n, int k)
    {
        int i = 0, j = 0, l = 0;
        int count = 0;
  
        // iterate for all
        // triples pairs (i, j, l)
        for (i = 1; i <= n; i++) {
            for (j = 1; j <= n; j++) {
                for (l = 1; l <= n; l++) {
  
                    // if the condition
                    // is satisfied
                    if ((i + j) % k == 0
                        && (i + l) % k == 0
                        && (j + l) % k == 0)
                        count++;
                }
            }
        }
        return count;
    }
  
    // Driver code
    public static void Main()
    {
        int n = 3;
        int k = 2;
        long ans = count_triples(n, k);
        Console.WriteLine(ans);
    }
}

PHP




<?php
//PHP implementation of the approach
// Function returns the
// count of the triplets
function count_triples($n, $k)
    {
         $i = 0; $j = 0; $l = 0;
        $count = 0;
 
        // iterate for all
        // triples pairs (i, j, l)
        for ($i = 1; $i <= $n; $i++) {
            for ($j = 1; $j <= $n; $j++) {
                for ($l = 1; $l <= $n; $l++) {
 
                    // if the condition
                    // is satisfied
                    if (($i + $j) % $k == 0
                        && ($i + $l) % $k == 0
                        && ($j + $l) % $k == 0)
                        $count++;
                }
            }
        }
        return $count;
    }
 
    // Driver code
        $n = 3;
        $k = 2;
        $ans = count_triples($n, $k);
        echo ($ans);
     
// This code is contributed by ajit
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the quadratic
// equation whose roots are a and b
function count_triples(n, k)
{
    var i = 0, j = 0, l = 0;
    var count = 0;
 
    // iterate for all
    // triples pairs (i, j, l)
    for(i = 1; i <= n; i++)
    {
        for(j = 1; j <= n; j++)
        {
            for(l = 1; l <= n; l++)
            {
 
                // if the condition
                // is satisfied
                if ((i + j) % k == 0
                    && (i + l) % k == 0
                    && (j + l) % k == 0)
                    count++;
            }
        }
    }
    return count;
}
// Driver Code
var n = 3;
var k = 2;
var ans = count_triples(n, k);
 
document.write(ans);
 
// This code is contributed by Khushboogoyal499
     
</script>

Output

9

Complexity Analysis:

  • Time Complexity: O(n3), since three loops are nested inside each other
  • Auxiliary Space: O(1), since no extra array is used so constant space is used 

My Personal Notes arrow_drop_up
Last Updated : 16 Sep, 2022
Like Article
Save Article
Similar Reads
Related Tutorials