Count of triplets in an Array such that A[i] * A[j] = A[k] and i < j < k

Given an array A[ ] consisting of N positive integers, the task is to find the number of triplets A[i], A[j] & A[k] in the array such that i < j < k and A[i] * A[j] = A[k].

Examples:

Input: N = 5, A[ ] = {2, 3, 4, 6, 12} 
Output:
Explanation: 
The valid triplets from the given array are: 
(A[0], A[1], A[3]) = (2, 3, 6) where (2*3 = 6) 
(A[0], A[3], A[4]) = (2, 6, 12) where (2*6 = 12) 
(A[1], A[2], A[4]) = (3, 4, 12) where (3*4 = 12) 
Hence, a total of 3 triplets exists which satisfies the given condition.
Input: N = 3, A[ ] = {1, 1, 1} 
Output:
Explanation: 
The only valid triplet is (A[0], A[1], A[2]) = (1, 1, 1) 
 

Naive Approach: 
The simplest approach to solve the problem is to generate all possible triplets and for each triplet, check if it satisfies the required condition. If found to be true, increase the count of triplets. After complete traversal of the array and generating all possible triplets, print the final count
Time Complexity: O(N3
Auxiliary Space: O(1)
Efficient Approach: 
The above approach can be optimized using Two Pointers and HashMap
Follow the steps below to solve the problem: 
 

  • Initialize a Map to store frequencies of array elements.
  • Iterate over the array in reverse, i.e. loop with a variable j in the range [N – 2, 1].
  • For every j, increase the count of A[j + 1] in the map. Iterate over the range [0, j – 1] using variable i and check if A[i] * A[j] is present in the map or not.
  • If A[i] * A[j] is found in the map, increase the count of triplets by the frequency of A[i] * A[j] stored in the map.
  • After complete traversal of the array, print the final count.

Below is the implementation of the above approach:
 



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Returns total number of
// valid triplets possible
int countTriplets(int A[], int N)
{
    // Stores the count
    int ans = 0;
 
    // Map to store frequency
    // of array elements
    map<int, int> map;
 
    for (int j = N - 2; j >= 1; j--) {
 
        // Increment the frequency
        // of A[j+1] as it can be
        // a valid A[k]
        map[A[j + 1]]++;
 
        for (int i = 0; i < j; i++) {
 
            int target = A[i] * A[j];
 
            // If target exists in the map
            if (map.find(target)
                != map.end())
                ans += map[target];
        }
    }
 
    // Return the final count
    return ans;
}
 
// Driver Code
int main()
{
    int N = 5;
    int A[] = { 2, 3, 4, 6, 12 };
 
    cout << countTriplets(A, N);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Returns total number of
// valid triplets possible
static int countTriplets(int A[], int N)
{
     
    // Stores the count
    int ans = 0;
 
    // Map to store frequency
    // of array elements
    HashMap<Integer,
            Integer> map = new HashMap<Integer,
                                       Integer>();
                                        
    for(int j = N - 2; j >= 1; j--)
    {
 
        // Increment the frequency
        // of A[j+1] as it can be
        // a valid A[k]
        if(map.containsKey(A[j + 1]))
            map.put(A[j + 1], map.get(A[j + 1]) + 1);
        else
            map.put(A[j + 1], 1);
 
        for(int i = 0; i < j; i++)
        {
            int target = A[i] * A[j];
 
            // If target exists in the map
            if (map.containsKey(target))
                ans += map.get(target);
        }
    }
 
    // Return the final count
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 5;
    int A[] = { 2, 3, 4, 6, 12 };
 
    System.out.print(countTriplets(A, N));
}
}
 
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
from collections import defaultdict
 
# Returns total number of
# valid triplets possible
def countTriplets(A, N):
 
    # Stores the count
    ans = 0
 
    # Map to store frequency
    # of array elements
    map = defaultdict(lambda: 0)
 
    for j in range(N - 2, 0, -1):
 
        # Increment the frequency
        # of A[j+1] as it can be
        # a valid A[k]
        map[A[j + 1]] += 1
 
        for i in range(j):
            target = A[i] * A[j]
 
            # If target exists in the map
            if(target in map.keys()):
                ans += map[target]
 
    # Return the final count
    return ans
 
# Driver code
if __name__ == '__main__':
 
    N = 5
    A = [ 2, 3, 4, 6, 12 ]
 
    print(countTriplets(A, N))
 
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
 
// Returns total number of
// valid triplets possible
static int countTriplets(int []A, int N)
{
     
    // Stores the count
    int ans = 0;
 
    // Map to store frequency
    // of array elements
    Dictionary<int,
               int> map = new Dictionary<int,
                                         int>();
                                        
    for(int j = N - 2; j >= 1; j--)
    {
 
        // Increment the frequency
        // of A[j+1] as it can be
        // a valid A[k]
        if(map.ContainsKey(A[j + 1]))
            map[A[j + 1]] = map[A[j + 1]] + 1;
        else
            map.Add(A[j + 1], 1);
 
        for(int i = 0; i < j; i++)
        {
            int target = A[i] * A[j];
 
            // If target exists in the map
            if (map.ContainsKey(target))
                ans += map[target];
        }
    }
 
    // Return the readonly count
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 5;
    int []A = { 2, 3, 4, 6, 12 };
 
    Console.Write(countTriplets(A, N));
}
}
 
// This code is contributed by sapnasingh4991

chevron_right


Output:

3


Time Complexity: O(N2
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.