# Count the number of pairs (i, j) such that either arr[i] is divisible by arr[j] or arr[j] is divisible by arr[i]

Given an array arr[] of N integers, the task is to find the count of unordered index pairs (i, j) such that i != j and 0 <=i < j < N and either arr[i] is divisible by arr[j] or arr[j] is divisible by arr[i].

Examples:

Input: arr[] = {2, 4}
Output: 1
(0, 1) is the only index pair possible.

Input: arr[] = {3, 2, 4, 2, 6}
Output: 6
Possible pairs are (0, 4), (1, 2), (1, 3), (1, 4), (2, 3) and (3, 4).

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to find the maximum element from the array and use variables count to store the number of unordered pairs, array freq[] to store the frequency of the elements of the array. Now traverse the array and for each element find the numbers that are divisible by the ith number of the array and are less than or equal to the maximum number in the array. If the number exists in the array then update the variable count.

Below is the implementation of the above approach:

## C++

 `// C++ implenetation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find number of unordered pairs ` `int` `freqPairs(``int` `arr[], ``int` `n) ` `{ ` ` `  `    ``// Maximum element from the array ` `    ``int` `max = *(std::max_element(arr, arr + n)); ` ` `  `    ``// Array to store the frequency of each ` `    ``// element ` `    ``int` `freq[max + 1] = { 0 }; ` ` `  `    ``// Stores the number of unordered pairs ` `    ``int` `count = 0; ` ` `  `    ``// Store the frequency of each element ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``freq[arr[i]]++; ` ` `  `    ``// Find the number of unordered pairs ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = 2 * arr[i]; j <= max; j += arr[i]) { ` ` `  `            ``// If the number j divisible by ith element ` `            ``// is present in the array ` `            ``if` `(freq[j] >= 1) ` `                ``count += freq[j]; ` `        ``} ` ` `  `        ``// If the ith element of the array ` `        ``// has frequency more than one ` `        ``if` `(freq[arr[i]] > 1) { ` `            ``count += freq[arr[i]] - 1; ` `            ``freq[arr[i]]--; ` `        ``} ` `    ``} ` ` `  `    ``return` `count; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` ` `  `    ``int` `arr[] = { 3, 2, 4, 2, 6 }; ` `    ``int` `n = (``sizeof``(arr) / ``sizeof``(arr)); ` ` `  `    ``cout << freqPairs(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `import` `java.util.Arrays; ` ` `  `// Java implementation of the approach ` `class` `GFG ` `{ ` ` `  `    ``// Function to find number of unordered pairs ` `    ``static` `int` `freqPairs(``int` `arr[], ``int` `n)  ` `    ``{ ` ` `  `        ``// Maximum element from the array ` `        ``int` `max = Arrays.stream(arr).max().getAsInt(); ` ` `  `        ``// Array to store the frequency of each ` `        ``// element ` `        ``int` `freq[] = ``new` `int``[max + ``1``]; ` ` `  `        ``// Stores the number of unordered pairs ` `        ``int` `count = ``0``; ` ` `  `        ``// Store the frequency of each element ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{ ` `            ``freq[arr[i]]++; ` `        ``} ` ` `  `        ``// Find the number of unordered pairs ` `        ``for` `(``int` `i = ``0``; i < n; i++)  ` `        ``{ ` `            ``for` `(``int` `j = ``2` `* arr[i]; j <= max; j += arr[i]) ` `            ``{ ` ` `  `                ``// If the number j divisible by ith element ` `                ``// is present in the array ` `                ``if` `(freq[j] >= ``1``)  ` `                ``{ ` `                    ``count += freq[j]; ` `                ``} ` `            ``} ` ` `  `            ``// If the ith element of the array ` `            ``// has frequency more than one ` `            ``if` `(freq[arr[i]] > ``1``)  ` `            ``{ ` `                ``count += freq[arr[i]] - ``1``; ` `                ``freq[arr[i]]--; ` `            ``} ` `        ``} ` ` `  `        ``return` `count; ` `    ``} ` ` `  `    ``// Driver code ` `    ``public` `static` `void` `main(String[] args)  ` `    ``{ ` `        ``int` `arr[] = {``3``, ``2``, ``4``, ``2``, ``6``}; ` `        ``int` `n = arr.length; ` ` `  `        ``System.out.println(freqPairs(arr, n)); ` `    ``} ` `} ` ` `  `// This code has been contributed by 29AjayKumar `

## Python3

 `# Python 3 implenetation of the approach ` ` `  `# Function to find number of unordered pairs ` `def` `freqPairs(arr, n): ` `     `  `    ``# Maximum element from the array ` `    ``max` `=` `arr[``0``] ` `    ``for` `i ``in` `range``(``len``(arr)): ` `        ``if` `arr[i] > ``max``: ` `            ``max` `=` `arr[i] ` ` `  `    ``# Array to store the frequency of  ` `    ``# each element ` `    ``freq ``=` `[``0` `for` `i ``in` `range``(``max` `+` `1``)]  ` ` `  `    ``# Stores the number of unordered pairs ` `    ``count ``=` `0` ` `  `    ``# Store the frequency of each element ` `    ``for` `i ``in` `range``(n): ` `        ``freq[arr[i]] ``+``=` `1` ` `  `    ``# Find the number of unordered pairs ` `    ``for` `i ``in` `range``(n): ` `        ``for` `j ``in` `range``(``2` `*` `arr[i],  ` `                           ``max` `+` `1``, arr[i]): ` `             `  `            ``# If the number j divisible by ith  ` `            ``# element is present in the array ` `            ``if` `(freq[j] >``=` `1``): ` `                ``count ``+``=` `freq[j] ` ` `  `        ``# If the ith element of the array ` `        ``# has frequency more than one ` `        ``if` `(freq[arr[i]] > ``1``): ` `            ``count ``+``=` `freq[arr[i]] ``-` `1` `            ``freq[arr[i]] ``-``=` `1` ` `  `    ``return` `count ` ` `  `# Driver code ` `if` `__name__ ``=``=` `'__main__'``: ` `    ``arr ``=` `[``3``, ``2``, ``4``, ``2``, ``6``] ` `    ``n ``=` `len``(arr) ` ` `  `    ``print``(freqPairs(arr, n)) ` ` `  `# This code is contributed by ` `# Surendra_Gangwar `

## C#

 `// C# implementation of the approach ` `using` `System; ` `using` `System.Linq; ` ` `  `class` `GFG  ` `{  ` ` `  `    ``// Function to find number of unordered pairs  ` `    ``static` `int` `freqPairs(``int` `[]arr, ``int` `n)  ` `    ``{  ` ` `  `        ``// Maximum element from the array  ` `        ``int` `max = arr.Max();  ` ` `  `        ``// Array to store the frequency of each  ` `        ``// element  ` `        ``int` `[]freq = ``new` `int``[max + 1];  ` ` `  `        ``// Stores the number of unordered pairs  ` `        ``int` `count = 0;  ` ` `  `        ``// Store the frequency of each element  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{  ` `            ``freq[arr[i]]++;  ` `        ``}  ` ` `  `        ``// Find the number of unordered pairs  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `        ``{  ` `            ``for` `(``int` `j = 2 * arr[i]; j <= max; j += arr[i])  ` `            ``{  ` ` `  `                ``// If the number j divisible by ith element  ` `                ``// is present in the array  ` `                ``if` `(freq[j] >= 1)  ` `                ``{  ` `                    ``count += freq[j];  ` `                ``}  ` `            ``}  ` ` `  `            ``// If the ith element of the array  ` `            ``// has frequency more than one  ` `            ``if` `(freq[arr[i]] > 1)  ` `            ``{  ` `                ``count += freq[arr[i]] - 1;  ` `                ``freq[arr[i]]--;  ` `            ``}  ` `        ``}  ` ` `  `        ``return` `count;  ` `    ``}  ` ` `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(String []args)  ` `    ``{  ` `        ``int` `[]arr = {3, 2, 4, 2, 6};  ` `        ``int` `n = arr.Length;  ` ` `  `        ``Console.WriteLine(freqPairs(arr, n));  ` `    ``}  ` `}  ` ` `  `// This code has been contributed by Arnab Kundu `

## PHP

 `= 1)  ` `                ``\$count` `+= ``\$freq``[``\$j``];  ` `        ``}  ` ` `  `        ``// If the ith element of the array  ` `        ``// has frequency more than one  ` `        ``if` `(``\$freq``[``\$arr``[``\$i``]] > 1) ` `        ``{  ` `            ``\$count` `+= ``\$freq``[``\$arr``[``\$i``]] - 1;  ` `            ``\$freq``[``\$arr``[``\$i``]]--;  ` `        ``}  ` `    ``}  ` ` `  `    ``return` `\$count``;  ` `}  ` ` `  `// Driver code  ` `\$arr` `= ``array``(3, 2, 4, 2, 6);  ` `\$n` `= ``count``(``\$arr``); ` ` `  `echo` `freqPairs(``\$arr``, ``\$n``);  ` ` `  `// This code is contributed by Ryuga ` `?> `

Output:

```6
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.