Split an array into groups of 3 such that X3 is divisible by X2 and X2 is divisible by X1

Given an array A containing N elements (N is divisible by 3), the task is to split the numbers into groups of 3, let the group have 3 elements X1, X2 and X3, the following conditions should be true for the group:

  • X1, X2 and X3 are pairwise distinct
  • X3 is divisible by X2
  • X2 is divisible by X1

Print -1 if splitting the array into N/3 Such groups is not possible.

Note: Elements of the array will lie in the range 1 to 6 (inclusive).

Examples:

Input : N = 6, A[] = {2, 2, 1, 1, 4, 6}
Output : 1 2 4
         1 2 6
Explanation: 
Group 1: Pairs = {(1,2), (2,4), (1,4)}
All pairs are distinct, 
4 is divisible by 2 and 2 by 1.
Group 2: Pairs = {(1,2), (2,6), (1,6)}
All pairs are distinct, 
6 is divisible by 2 and 2 by 1.

Input : N = 6, A[] = {1, 1, 1, 6, 6, 3}
Output : -1


Approach:

Since the values of the array are between 1 and 6, only the following kind of groups can be made:

  • 1 2 4
  • 1 2 6
  • 1 3 6

Start of by counting the frequency of each element. Since 1 is common across all groups, it must occur exactly N/3 times. 4 can be put into only the first kind of group, which always contains 2. So the count of 2 should be greater than the count of 4. The remaining 2 can be put in only the second kind of groups. Now, the remaining numbers have to be put in the third kind of groups. If at any point the count is less than required, the answer would be -1.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to split array in groups of 3
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to print the groups after
// spliting array in groups of 3
void printGroups(int n, int a[])
{
    int ct[7] = { 0 }, grps = n / 3, i;
  
    // Count occurence of each element
    for (i = 0; i < n; i++)
        ct[a[i]]++;
  
    // Check if it is possible to form the groups
    if (ct[1] != grps || (ct[4] + ct[6]) != grps 
              || (ct[2] + ct[3]) != grps || ct[4] > ct[2]) 
    {
        cout << -1;
        return;
    }
  
    // Print groups that end at 4
    for (i = 0; i < ct[4]; i++)
        cout << "1 2 4\n";
  
    // Print groups that end at 6, with 2
    // in the middle
    for (i = 0; i < ct[2] - ct[4]; i++)
        cout << "1 2 6\n";
  
    // Print groups that have a 3 in the middle
    for (i = 0; i < ct[3]; i++)
        cout << "1 3 6\n";
}
  
// Driver Code
int main()
{
    int n = 6;
    int a[n] = { 2, 2, 1, 1, 4, 6 };
  
    printGroups(n, a);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to split array in groups of 3
class GFG 
{
  
    // Function to print the groups after
    // spliting array in groups of 3
    static void printGroups(int n, int a[]) 
    {
        int ct[] = new int[7], grps = n / 3, i;
  
        // Count occurence of each element
        for (i = 0; i < n; i++)
        {
            ct[a[i]]++;
        }
  
        // Check if it is possible to form the groups
        if (ct[1] != grps || (ct[4] + ct[6]) != grps
            || (ct[2] + ct[3]) != grps || ct[4] > ct[2]) 
        {
            System.out.print(-1);
            return;
        }
  
        // Print groups that end at 4
        for (i = 0; i < ct[4]; i++) 
        {
            System.out.print("1 2 4\n");
        }
  
        // Print groups that end at 6, with 2
        // in the middle
        for (i = 0; i < ct[2] - ct[4]; i++) 
        {
            System.out.print("1 2 6\n");
        }
          
        // Print groups that have a 3 in the middle
        for (i = 0; i < ct[3]; i++)
        {
            System.out.print("1 3 6\n");
        }
    }
  
    // Driver Code
    public static void main(String[] args) 
    {
        int n = 6;
        int a[] = {2, 2, 1, 1, 4, 6};
  
        printGroups(n, a);
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to split array in 
# groups of 3
  
# Function to pr the groups after
# spliting array in groups of 3
def printGroups(n, a):
  
    ct = [0 for i in range(7)]
    grps = n // 3
    i = 0
  
    # Count occurence of each element
    for i in range(n):
        ct[a[i]] += 1
  
    # Check if it is possible to 
    # form the groups
    if (ct[1] != grps or (ct[4] + ct[6]) != grps or 
       (ct[2] + ct[3]) != grps or ct[4] > ct[2]):
        print(-1)
        return
  
    # Pr groups that end at 4
    for i in range(ct[4]):
        print("1 2 4")
  
    # Pr groups that end at 6, with 2
    # in the middle
    for i in range(ct[2] - ct[4]):
        print("1 2 6")
  
    # Pr groups that have a 3 in the middle
    for i in range(ct[3]):
        print("1 3 6")
  
# Driver Code
n = 6
a = [2, 2, 1, 1, 4, 6 ]
  
printGroups(n, a)
  
# This code is contributed
# by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to split array in groups of 3
using System;
  
class GFG 
{
  
    // Function to print the groups after
    // spliting array in groups of 3
    static void printGroups(int n, int []a) 
    {
        int []ct = new int[7];
        int grps = n / 3, i;
  
        // Count occurence of each element
        for (i = 0; i < n; i++)
        {
            ct[a[i]]++;
        }
  
        // Check if it is possible to form the groups
        if (ct[1] != grps || (ct[4] + ct[6]) != grps || 
           (ct[2] + ct[3]) != grps || ct[4] > ct[2]) 
        {
            Console.Write(-1);
            return;
        }
  
        // Print groups that end at 4
        for (i = 0; i < ct[4]; i++) 
        {
            Console.Write("1 2 4\n");
        }
  
        // Print groups that end at 6, with 2
        // in the middle
        for (i = 0; i < ct[2] - ct[4]; i++) 
        {
            Console.Write("1 2 6\n");
        }
          
        // Print groups that have a 3 in the middle
        for (i = 0; i < ct[3]; i++)
        {
            Console.Write("1 3 6\n");
        }
    }
  
    // Driver Code
    public static void Main() 
    {
        int n = 6;
        int []a = {2, 2, 1, 1, 4, 6};
  
        printGroups(n, a);
    }
}
  
// This code is contributed 
// by Akanksha Rai

chevron_right


PHP

$ct[2])
{
echo -1;
return;
}

// Print groups that end at 4
for ($i = 0; $i < $ct[4]; $i++) echo "1 2 4\n"; // Print groups that end at 6, with 2 // in the middle for ($i = 0; $i < $ct[2] - $ct[4]; $i++) echo "1 2 6\n"; // Print groups that have a 3 in the middle for ($i = 0; $i < $ct[3]; $i++) echo "1 3 6\n"; } // Driver Code $n = 6; $a = array(2, 2, 1, 1, 4, 6); printGroups($n, $a); // This code is contributed // by Akanksha Rai ?>

Output:

1 2 4
1 2 6

Time Complexity: O(N)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.