Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Count triplets (a, b, c) such that a + b, b + c and a + c are all divisible by K

  • Difficulty Level : Basic
  • Last Updated : 09 Apr, 2021

Given two integers ‘N’ and ‘K’, the task is to count the number of triplets (a, b, c) of positive integers not greater than ‘N’ such that ‘a + b’, ‘b + c’ and ‘c + a’ are all multiples of ‘K’. Note that ‘a’, ‘b’ and ‘c’ may or may not be the same in a triplet.
Examples: 
 

Input: N = 2, K = 2 
Output:
All possible triplets are 
(1, 1, 1) and (2, 2, 2)
Input: N = 3, K = 2 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: Run three nested loops from ‘1’ to ‘N’ and check whether i+j, j+l and l+i are all divisible by ‘K’. Increment the count if the condition is true.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include<iostream>
using namespace std;
class gfg
{
    // Function returns the
    // count of the triplets
    public:
    long count_triples(int n, int k);
};
  
    long gfg :: count_triples(int n, int k)
    {
        int i = 0, j = 0, l = 0;
        int count = 0;
 
        // iterate for all
        // triples pairs (i, j, l)
        for (i = 1; i <= n; i++)
        {
            for (j = 1; j <= n; j++)
            {
                for (l = 1; l <= n; l++)
                {
 
                    // if the condition
                    // is satisfied
                    if ((i + j) % k == 0
                        && (i + l) % k == 0
                        && (j + l) % k == 0)
                        count++;
                }
            }
        }
        return count;
    }
 
    // Driver code
    int main()
    {
        gfg g;
        int n = 3;
        int k = 2;
        long ans = g.count_triples(n, k);
        cout << ans;
    }
//This code is contributed by Soumik

Java




// Java implementation of the approach
class GFG {
 
    // Function returns the
    // count of the triplets
    static long count_triples(int n, int k)
    {
        int i = 0, j = 0, l = 0;
        int count = 0;
 
        // iterate for all
        // triples pairs (i, j, l)
        for (i = 1; i <= n; i++) {
            for (j = 1; j <= n; j++) {
                for (l = 1; l <= n; l++) {
 
                    // if the condition
                    // is satisfied
                    if ((i + j) % k == 0
                        && (i + l) % k == 0
                        && (j + l) % k == 0)
                        count++;
                }
            }
        }
        return count;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n = 3;
        int k = 2;
        long ans = count_triples(n, k);
        System.out.println(ans);
    }
}

Python3




# Python3 implementation of the
# above approach
def count_triples(n, k):
     
    count, i, j, l = 0, 0, 0, 0
 
    # Iterate for all triples
    # pairs (i, j, l)
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            for l in range(1, n + 1):
                 
                # If the condition
                # is satisfied
                if ((i + j) % k == 0 and
                    (i + l) % k == 0 and
                    (j + l) % k == 0):
                    count += 1
         
    return count
 
# Driver code
if __name__ == "__main__":
     
    n, k = 3, 2
    ans = count_triples(n, k)
    print(ans)
     
# This code is contributed
# by Rituraj Jain

C#




// C# implementation of the approach
 
using System;
 
class GFG {
  
    // Function returns the
    // count of the triplets
    static long count_triples(int n, int k)
    {
        int i = 0, j = 0, l = 0;
        int count = 0;
  
        // iterate for all
        // triples pairs (i, j, l)
        for (i = 1; i <= n; i++) {
            for (j = 1; j <= n; j++) {
                for (l = 1; l <= n; l++) {
  
                    // if the condition
                    // is satisfied
                    if ((i + j) % k == 0
                        && (i + l) % k == 0
                        && (j + l) % k == 0)
                        count++;
                }
            }
        }
        return count;
    }
  
    // Driver code
    public static void Main()
    {
        int n = 3;
        int k = 2;
        long ans = count_triples(n, k);
        Console.WriteLine(ans);
    }
}

PHP




<?php
//PHP implementation of the approach
// Function returns the
// count of the triplets
function count_triples($n, $k)
    {
         $i = 0; $j = 0; $l = 0;
        $count = 0;
 
        // iterate for all
        // triples pairs (i, j, l)
        for ($i = 1; $i <= $n; $i++) {
            for ($j = 1; $j <= $n; $j++) {
                for ($l = 1; $l <= $n; $l++) {
 
                    // if the condition
                    // is satisfied
                    if (($i + $j) % $k == 0
                        && ($i + $l) % $k == 0
                        && ($j + $l) % $k == 0)
                        $count++;
                }
            }
        }
        return $count;
    }
 
    // Driver code
        $n = 3;
        $k = 2;
        $ans = count_triples($n, $k);
        echo ($ans);
     
// This code is contributed by ajit
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to find the quadratic
// equation whose roots are a and b
function count_triples(n, k)
{
    var i = 0, j = 0, l = 0;
    var count = 0;
 
    // iterate for all
    // triples pairs (i, j, l)
    for(i = 1; i <= n; i++)
    {
        for(j = 1; j <= n; j++)
        {
            for(l = 1; l <= n; l++)
            {
 
                // if the condition
                // is satisfied
                if ((i + j) % k == 0
                    && (i + l) % k == 0
                    && (j + l) % k == 0)
                    count++;
            }
        }
    }
    return count;
}
// Driver Code
var n = 3;
var k = 2;
var ans = count_triples(n, k);
 
document.write(ans);
 
// This code is contributed by Khushboogoyal499
     
</script>
Output: 
9

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!