Count of subarrays which forms a permutation from given Array elements

Given an array A[] consisting of integers [1, N], the task is to count the total number of subarrays of all possible lengths x (1 ≤ x ≤ N), consisting of a permutation of integers [1, x] from the given array. 
Examples: 

Input: A[] = {3, 1, 2, 5, 4} 
Output:
Explanation: 
Subarrays forming a permutation are {1}, {1, 2}, {3, 1, 2} and {3, 1, 2, 5, 4}.

Input: A[] = {4, 5, 1, 3, 2, 6}Output:
Explanation: 
Subarrays forming a permutation are {1}, {1, 3, 2}, {4, 5, 1, 3, 2} and {4, 5, 1, 3, 2, 6}. 

Naive Approach: 
Follow the steps below to solve the problem: 

  • The simplest approach to solve the problem is to generate all possible subarrays.
  • For each subarray, check if it is a permutation of elements in the range [1, length of subarray].
  • For every such subarray found, increase count. Finally, print the count.

Time Complexity: O(N3
Auxiliary Space: O(1)

Efficient Approach: 
To optimize the above approach, follow the steps below: 



  • For every element from i = [1, N], check the maximum and minimum index, at which the elements of the permutation [1, i] is present.
  • If the difference between the maximum and minimum index is equal to i, then it means there is a valid contiguous permutation for i.
  • For every such permutation, increase count. Finally, print the count.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function returns the required count
int PermuteTheArray(int A[], int n)
{
  
    int arr[n];
  
    // Store the indices of the
    // elements present in A[].
    for (int i = 0; i < n; i++) {
        arr[A[i] - 1] = i;
    }
  
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    int mini = n, maxi = 0;
    int count = 0;
  
    for (int i = 0; i < n; i++) {
  
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = min(mini, arr[i]);
        maxi = max(maxi, arr[i]);
  
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
  
            // Increase count
            count++;
    }
  
    // Return final count
    return count;
}
  
// Driver Code
int main()
{
  
    int A[] = { 4, 5, 1, 3, 2, 6 };
    cout << PermuteTheArray(A, 6);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
class GFG{
  
// Function returns the required count
static int PermuteTheArray(int A[], int n)
{
    int []arr = new int[n];
  
    // Store the indices of the
    // elements present in A[].
    for(int i = 0; i < n; i++) 
    {
        arr[A[i] - 1] = i;
    }
  
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    int mini = n, maxi = 0;
    int count = 0;
  
    for(int i = 0; i < n; i++)
    {
  
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = Math.min(mini, arr[i]);
        maxi = Math.max(maxi, arr[i]);
  
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
  
            // Increase count
            count++;
    }
  
    // Return final count
    return count;
}
  
// Driver Code
public static void main(String[] args)
{
    int A[] = { 4, 5, 1, 3, 2, 6 };
      
    System.out.print(PermuteTheArray(A, 6));
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function returns the required count
def PermuteTheArray(A, n):
  
    arr = [0] * n
  
    # Store the indices of the
    # elements present in A[].
    for i in range(n):
        arr[A[i] - 1] = i
  
    # Store the maximum and
    # minimum index of the
    # elements from 1 to i.
    mini = n
    maxi = 0
    count = 0
  
    for i in range(n):
  
        # Update maxi and mini, to
        # store minimum and maximum
        # index for permutation
        # of elements from 1 to i+1
        mini = min(mini, arr[i])
        maxi = max(maxi, arr[i])
  
        # If difference between maxi
        # and mini is equal to i
        if (maxi - mini == i):
  
            # Increase count
            count += 1
  
    # Return final count
    return count
  
# Driver Code
if __name__ == "__main__":
  
    A = [ 4, 5, 1, 3, 2, 6 ]
      
    print(PermuteTheArray(A, 6))
  
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
  
class GFG{
  
// Function returns the required count
static int PermuteTheArray(int []A, int n)
{
    int []arr = new int[n];
  
    // Store the indices of the
    // elements present in []A.
    for(int i = 0; i < n; i++) 
    {
        arr[A[i] - 1] = i;
    }
  
    // Store the maximum and
    // minimum index of the
    // elements from 1 to i.
    int mini = n, maxi = 0;
    int count = 0;
  
    for(int i = 0; i < n; i++)
    {
  
        // Update maxi and mini, to
        // store minimum and maximum
        // index for permutation
        // of elements from 1 to i+1
        mini = Math.Min(mini, arr[i]);
        maxi = Math.Max(maxi, arr[i]);
  
        // If difference between maxi
        // and mini is equal to i
        if (maxi - mini == i)
  
            // Increase count
            count++;
    }
  
    // Return final count
    return count;
}
  
// Driver Code
public static void Main(String[] args)
{
    int []A = { 4, 5, 1, 3, 2, 6 };
      
    Console.Write(PermuteTheArray(A, 6));
}
}
  
// This code is contributed by gauravrajput1

chevron_right


Output: 

4

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


A BTech sophomore in Information Technology major, having a keen interest in computer science and programming, particularly in algorithms design and analysis, data structures, Python and C++

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : chitranayal, GauravRajput1