Given an array arr[] of size N and an element K. The task is to find the number of sub-arrays of the given array such that the remainder when dividing the sum of its elements by K is equal to the number of elements in the subarray.
Examples:
Input: arr[] = {1, 4, 2, 3, 5}, K = 4
Output: 4
{1}, {1, 4, 2}, {4, 2} and {5}
are the only valid subarrays.
Input: arr[] = {4, 2, 4, 2, 4, 2, 4, 2}, K = 4
Output: 7
Approach: Let’s define a sequence Sn such that Si = A1 + A2 + ··· + Ai and S0 = 0. Then, the condition that a contiguous subsequence Ai+1, …, Aj is valid can be represented as (Sj – Si) % K = j – i.
This equation can then be transformed into the following equivalent conditions:
(Sj – j) % K = (Si – i) % K and j – i < K.
Therefore, for each j(1 ? j ? N), count the number of j – K < i < j such that (Sj – j) % K = (Si – i) % K. For j the segment needed to be searched is (j – K, j), and for j + 1, it is (j – K + 1, j + 1), and these differ only by one element at the leftmost and rightmost, so in order to search for (j + 1)th after searching for jth element, only discard the leftmost element and add the rightmost element. Operations of discarding or adding can be performed quickly by managing the number of Si – i‘s by using associative arrays (such as map in C++ or dict in Python).
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int sub_arrays( int a[], int n, int k)
{
int sum[n + 2] = { 0 };
for ( int i = 0; i < n; i++) {
a[i]--;
a[i] %= k;
sum[i + 1] += sum[i] + a[i];
sum[i + 1] %= k;
}
int ans = 0, l = 0, r = 0;
map< int , int > mp;
for ( int i = 0; i < n + 1; i++) {
ans += mp[sum[i]];
mp[sum[i]]++;
r++;
if (r - l >= k) {
mp[sum[l]]--;
l++;
}
}
return ans;
}
int main()
{
int a[] = { 1, 4, 2, 3, 5 };
int n = sizeof (a) / sizeof (a[0]);
int k = 4;
cout << sub_arrays(a, n, k);
return 0;
}
|
Java
import java.util.*;
class gfg
{
static int sub_arrays( int []a, int n, int k)
{
int sum[] = new int [n + 2 ] ;
for ( int i = 0 ; i < n+ 2 ; i++)
{
sum[i] = 0 ;
}
for ( int i = 0 ; i < n; i++)
{
a[i]--;
a[i] %= k;
sum[i + 1 ] += sum[i] + a[i];
sum[i + 1 ] %= k;
}
int ans = 0 , l = 0 , r = 0 ;
HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>();
for ( int i = 0 ; i < n + 1 ; i++)
{
mp.put(sum[i], 0 );
}
int temp;
for ( int i = 0 ; i < n + 1 ; i++)
{
ans += ( int )mp.get(sum[i]);
temp =( int )mp.get(sum[i]) + 1 ;
mp.put(sum[i], temp);
r++;
if (r - l >= k)
{
temp = ( int )mp.get(sum[l]) - 1 ;
mp.put(sum[l], temp);
l++;
}
}
return ans;
}
public static void main(String args[])
{
int []a = { 1 , 4 , 2 , 3 , 5 };
int n = a.length;
int k = 4 ;
System.out.print(sub_arrays(a, n, k));
}
}
|
Python3
def sub_arrays(a, n, k):
sum = [ 0 for i in range (n + 2 )]
for i in range (n):
a[i] - = 1
a[i] % = k
sum [i + 1 ] + = sum [i] + a[i]
sum [i + 1 ] % = k
ans = 0
l = 0
r = 0
mp = dict ()
for i in range (n + 1 ):
if sum [i] in mp:
ans + = mp[ sum [i]]
mp[ sum [i]] = mp.get( sum [i], 0 ) + 1
r + = 1
if (r - l > = k):
mp[ sum [l]] - = 1
l + = 1
return ans
a = [ 1 , 4 , 2 , 3 , 5 ]
n = len (a)
k = 4
print (sub_arrays(a, n, k))
|
C#
using System;
using System.Collections.Generic;
class gfg
{
static int sub_arrays( int []a, int n, int k)
{
int []sum = new int [n + 2] ;
for ( int i = 0; i < n + 2; i++)
{
sum[i] = 0;
}
for ( int i = 0; i < n; i++)
{
a[i]--;
a[i] %= k;
sum[i + 1] += sum[i] + a[i];
sum[i + 1] %= k;
}
int ans = 0, l = 0, r = 0;
Dictionary< int , int > mp = new Dictionary< int , int >();
for ( int i = 0; i < n + 1; i++)
{
if (!mp.ContainsKey(sum[i]))
mp.Add(sum[i], 0);
}
int temp;
for ( int i = 0; i < n + 1; i++)
{
ans += ( int )mp[sum[i]];
temp =( int )mp[sum[i]] + 1;
mp[sum[i]] = temp;
r++;
if (r - l >= k)
{
temp = ( int )mp[sum[l]] - 1;
mp[sum[i]] = temp;
l++;
}
}
return ans;
}
public static void Main(String []args)
{
int []a = { 1, 4, 2, 3, 5 };
int n = a.Length;
int k = 4;
Console.Write(sub_arrays(a, n, k));
}
}
|
Javascript
<script>
function sub_arrays(a, n, k) {
let sum = new Array(n + 2);
for (let i = 0; i < n + 2; i++) {
sum[i] = 0;
}
for (let i = 0; i < n; i++) {
a[i]--;
a[i] %= k;
sum[i + 1] += sum[i] + a[i];
sum[i + 1] %= k;
}
let ans = 0, l = 0, r = 0;
let mp = new Map();
for (let i = 0; i < n + 1; i++) {
if (!mp.has(sum[i]))
mp.set(sum[i], 0);
}
let temp;
for (let i = 0; i < n + 1; i++) {
ans += mp.get(sum[i]);
temp = mp.get(sum[i]) + 1;
mp.set(sum[i], temp);
r++;
if (r - l >= k) {
temp = mp.get(sum[l]) - 1;
mp.set(sum[i], temp);
l++;
}
}
return ans;
}
let a = [1, 4, 2, 3, 5];
let n = a.length;
let k = 4;
document.write(sub_arrays(a, n, k));
</script>
|
Output:
4
Time Complexity: O(N* log(N))
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
03 Jun, 2021
Like Article
Save Article