Count of nodes that are greater than Ancestors

Given the root of a tree, the task is to find the count of nodes which are greater than all of its ancestors.

Examples:

Input: 
  4
 / \
5   2
   / \
  3   6
Output: 3
The nodes are 4, 5 and 6.

Input: 
   10
  /  \
 8    6
  \    \
   3    5
  /
 1
Output: 1

Approach: The problem can be solved using dfs. In every function call, pass a variable maxx which stores the maximum among all the nodes traversed so far and every node whose value is greater than maxx is the node that satisfies the given condition. Hence, increment the count.



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Structure for the node of the tree
struct Tree {
    int val;
    Tree* left;
    Tree* right;
    Tree(int _val)
    {
        val = _val;
        left = NULL;
        right = NULL;
    }
};
  
// Dfs Function
void dfs(Tree* node, int maxx, int& count)
{
    // Base case
    if (node == NULL) {
        return;
    }
    else {
  
        // Increment the count if the current
        // node's value is greater than the
        // maximum value in it's ancestors
        if (node->val > maxx)
            count++;
  
        // Left traversal
        dfs(node->left, max(maxx, node->val), count);
  
        // Right traversal
        dfs(node->right, max(maxx, node->val), count);
    }
}
  
// Driver code
int main()
{
  
    Tree* root = new Tree(4);
    root->left = new Tree(5);
    root->right = new Tree(2);
    root->right->left = new Tree(3);
    root->right->right = new Tree(6);
  
    // To store the required count
    int count = 0;
  
    dfs(root, INT_MIN, count);
  
    cout << count;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
  
static int count;
  
// Structure for the node of the tree
static class Tree
{
    int val;
    Tree left;
    Tree right;
    Tree(int _val)
    {
        val = _val;
        left = null;
        right = null;
    }
};
  
// Dfs Function
static void dfs(Tree node, int maxx)
{
    // Base case
    if (node == null)
    {
        return;
    }
    else 
    {
  
        // Increment the count if the current
        // node's value is greater than the
        // maximum value in it's ancestors
        if (node.val > maxx)
            count++;
  
        // Left traversal
        dfs(node.left, Math.max(maxx, node.val));
  
        // Right traversal
        dfs(node.right, Math.max(maxx, node.val));
    }
}
  
// Driver code
public static void main(String[] args)
{
    Tree root = new Tree(4);
    root.left = new Tree(5);
    root.right = new Tree(2);
    root.right.left = new Tree(3);
    root.right.right = new Tree(6);
  
    // To store the required count
    count = 0;
  
    dfs(root, Integer.MIN_VALUE);
  
    System.out.print(count);
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
static int count;
  
// Structure for the node of the tree
public class Tree
{
    public int val;
    public Tree left;
    public Tree right;
    public Tree(int _val)
    {
        val = _val;
        left = null;
        right = null;
    }
};
  
// Dfs Function
static void dfs(Tree node, int maxx)
{
    // Base case
    if (node == null)
    {
        return;
    }
    else
    {
  
        // Increment the count if the current
        // node's value is greater than the
        // maximum value in it's ancestors
        if (node.val > maxx)
            count++;
  
        // Left traversal
        dfs(node.left, Math.Max(maxx, node.val));
  
        // Right traversal
        dfs(node.right, Math.Max(maxx, node.val));
    }
}
  
// Driver code
public static void Main(String[] args)
{
    Tree root = new Tree(4);
    root.left = new Tree(5);
    root.right = new Tree(2);
    root.right.left = new Tree(3);
    root.right.right = new Tree(6);
  
    // To store the required count
    count = 0;
  
    dfs(root, int.MinValue);
  
    Console.Write(count);
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Output:

3



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : 29AjayKumar, Rajput-Ji

Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.