Related Articles

# Count of integers up to N which are non divisors and non coprime with N

• Last Updated : 10 May, 2021

Given an integer N, the task is to find the count of all possible integers less than N satisfying the following properties:

• The number is not coprime with N i.e their GCD is greater than 1.
• The number is not a divisor of N.

Examples:

Input: N = 10
Output:
Explanation:
All possible integers which are less than 10 and are neither divisors nor coprime with 10, are {4, 6, 8}.
Therefore, the required count is 3.
Input: N = 42
Output: 23

Approach:
Follow the steps below to solve the problem:

Total count = N – Euler’s totient(N) – Divisor count(N)

Below is the implementation of the above approach:

## C++

 `// C++ Program to implement``// the above approach``#include ``using` `namespace` `std;` `// Function to return the count``// of integers less than N``// satisfying given conditions``int` `count(``int` `n)``{``    ``// Stores Euler counts``    ``int` `phi[n + 1] = { 0 };` `    ``// Store Divisor counts``    ``int` `divs[n + 1] = { 0 };` `    ``// Based on Sieve of Eratosthenes``    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``phi[i] += i;` `        ``// Update phi values of all``        ``// multiples of i``        ``for` `(``int` `j = i * 2; j <= n; j += i)``            ``phi[j] -= phi[i];` `        ``// Update count of divisors``        ``for` `(``int` `j = i; j <= n; j += i)``            ``divs[j]++;``    ``}` `    ``// Return the final count``    ``return` `(n - phi[n] - divs[n] + 1);``}` `// Driver Code``int` `main()``{` `    ``int` `N = 42;` `    ``cout << count(N);``    ``return` `0;``}`

## Java

 `// Java program to implement``// the above approach``import` `java.util.Arrays;` `class` `GFG{``    ` `// Function to return the count``// of integers less than N``// satisfying given conditions``public` `static` `int` `count(``int` `n)``{``    ` `    ``// Stores Euler counts``    ``int` `[]phi = ``new` `int``[n + ``1``];``    ``Arrays.fill(phi, ``0``);` `    ``// Store Divisor counts``    ``int` `[]divs = ``new` `int``[n + ``1``];``    ``Arrays.fill(divs, ``0``);``    ` `    ``// Based on Sieve of Eratosthenes``    ``for``(``int` `i = ``1``; i <= n; i++)``    ``{``        ``phi[i] += i;` `        ``// Update phi values of all``        ``// multiples of i``        ``for``(``int` `j = i * ``2``; j <= n; j += i)``            ``phi[j] -= phi[i];` `        ``// Update count of divisors``        ``for``(``int` `j = i; j <= n; j += i)``            ``divs[j]++;``    ``}` `    ``// Return the final count``    ``return` `(n - phi[n] - divs[n] + ``1``);``}` `// Driver Code``public` `static` `void` `main(String []args)``{``    ``int` `N = ``42``;` `    ``System.out.println(count(N));``}``}` `// This code is contributed by grand_master`

## Python3

 `# Python3 program to implement``# the above approach` `# Function to return the count``# of integers less than N``# satisfying given conditions``def` `count(n):``    ` `    ``# Stores Euler counts``    ``phi ``=` `[``0``] ``*` `(n ``+` `1``)``    ` `    ``# Store Divisor counts``    ``divs ``=` `[``0``] ``*` `(n ``+` `1``)``    ` `    ``# Based on Sieve of Eratosthenes``    ``for` `i ``in` `range``(``1``, n ``+` `1``):``        ``phi[i] ``+``=` `i``        ` `        ``# Update phi values of all``        ``# multiples of i``        ``for` `j ``in` `range``(i ``*` `2``, n ``+` `1``, i):``            ``phi[j] ``-``=` `phi[i];` `        ``# Update count of divisors``        ``for` `j ``in` `range``(i, n ``+` `1``, i):``            ``divs[j] ``+``=` `1``            ` `    ``# Return the final count``    ``return` `(n ``-` `phi[n] ``-` `divs[n] ``+` `1``);``    ` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``N ``=` `42``    ` `    ``print``(count(N))` `# This code is contributed by jana_sayantan`

## C#

 `// C# program to implement``// the above approach``using` `System;` `class` `GFG{``    ` `// Function to return the count``// of integers less than N``// satisfying given conditions``public` `static` `int` `count(``int` `n)``{``    ` `    ``// Stores Euler counts``    ``int` `[]phi = ``new` `int``[n + 1];``    ` `    ``// Store Divisor counts``    ``int` `[]divs = ``new` `int``[n + 1];``    ` `    ``// Based on Sieve of Eratosthenes``    ``for``(``int` `i = 1; i <= n; i++)``    ``{``        ``phi[i] += i;` `        ``// Update phi values of all``        ``// multiples of i``        ``for``(``int` `j = i * 2; j <= n; j += i)``            ``phi[j] -= phi[i];` `        ``// Update count of divisors``        ``for``(``int` `j = i; j <= n; j += i)``            ``divs[j]++;``    ``}` `    ``// Return the final count``    ``return` `(n - phi[n] - divs[n] + 1);``}` `// Driver Code``public` `static` `void` `Main(String []args)``{``    ``int` `N = 42;` `    ``Console.WriteLine(count(N));``}``}` `// This code is contributed by 29AjayKumar`

## Javascript

 ``
Output:
`23`

Time Complexity: O(N*log(log(N)))
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up