Total number of divisors for a given number
Given a positive integer n, we have to find the total number of divisors for n.
Examples:
Input : n = 25 Output : 3 Divisors are 1, 5 and 25. Input : n = 24 Output : 8 Divisors are 1, 2, 3, 4, 6, 8 12 and 24.
We have discussed different approaches for printing all divisors (here and here). Here the task is simpler, we need to count divisors.
First of all store all primes from 2 to max_size in an array so that we should only check for the prime divisors. Now we will only wish to calculate the factorization of n in the following form:
n =
=
where ai are prime factors and pi are integral power of them.
So, for this factorization we have formula to find total number of divisor of n and that is:
C++
// CPP program for finding number of divisor #include <bits/stdc++.h> using namespace std; // program for finding no. of divisors int divCount( int n) { // sieve method for prime calculation bool hash[n + 1]; memset (hash, true , sizeof (hash)); for ( int p = 2; p * p < n; p++) if (hash[p] == true ) for ( int i = p * 2; i < n; i += p) hash[i] = false ; // Traversing through all prime numbers int total = 1; for ( int p = 2; p <= n; p++) { if (hash[p]) { // calculate number of divisor // with formula total div = // (p1+1) * (p2+1) *.....* (pn+1) // where n = (a1^p1)*(a2^p2).... // *(an^pn) ai being prime divisor // for n and pi are their respective // power in factorization int count = 0; if (n % p == 0) { while (n % p == 0) { n = n / p; count++; } total = total * (count + 1); } } } return total; } // driver program int main() { int n = 24; cout << divCount(n); return 0; } |
Java
// Java program for finding // number of divisor import java.io.*; import java.util.*; import java.lang.*; class GFG { // program for finding // no. of divisors static int divCount( int n) { // sieve method for prime calculation boolean hash[] = new boolean [n + 1 ]; Arrays.fill(hash, true ); for ( int p = 2 ; p * p < n; p++) if (hash[p] == true ) for ( int i = p * 2 ; i < n; i += p) hash[i] = false ; // Traversing through // all prime numbers int total = 1 ; for ( int p = 2 ; p <= n; p++) { if (hash[p]) { // calculate number of divisor // with formula total div = // (p1+1) * (p2+1) *.....* (pn+1) // where n = (a1^p1)*(a2^p2).... // *(an^pn) ai being prime divisor // for n and pi are their respective // power in factorization int count = 0 ; if (n % p == 0 ) { while (n % p == 0 ) { n = n / p; count++; } total = total * (count + 1 ); } } } return total; } // Driver Code public static void main(String[] args) { int n = 24 ; System.out.print(divCount(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
Python3
# Python3 program for finding # number of divisor # program for finding # no. of divisors def divCount(n): # sieve method for # prime calculation hh = [ 1 ] * (n + 1 ); p = 2 ; while ((p * p) < n): if (hh[p] = = 1 ): for i in range ((p * 2 ), n, p): hh[i] = 0 ; p + = 1 ; # Traversing through # all prime numbers total = 1 ; for p in range ( 2 , n + 1 ): if (hh[p] = = 1 ): # calculate number of divisor # with formula total div = # (p1+1) * (p2+1) *.....* (pn+1) # where n = (a1^p1)*(a2^p2).... # *(an^pn) ai being prime divisor # for n and pi are their respective # power in factorization count = 0 ; if (n % p = = 0 ): while (n % p = = 0 ): n = int (n / p); count + = 1 ; total * = (count + 1 ); return total; # Driver Code n = 24 ; print (divCount(n)); # This code is contributed by mits |
C#
// C# program for finding // number of divisor using System; class GFG { // program for finding // no. of divisors static int divCount( int n) { // sieve method for prime calculation bool [] hash = new bool [n + 1]; for ( int p = 2; p * p < n; p++) if (hash[p] == false ) for ( int i = p * 2; i < n; i += p) hash[i] = true ; // Traversing through // all prime numbers int total = 1; for ( int p = 2; p <= n; p++) { if (hash[p] == false ) { // calculate number of divisor // with formula total div = // (p1+1) * (p2+1) *.....* (pn+1) // where n = (a1^p1)*(a2^p2).... // *(an^pn) ai being prime divisor // for n and pi are their respective // power in factorization int count = 0; if (n % p == 0) { while (n % p == 0) { n = n / p; count++; } total = total * (count + 1); } } } return total; } // Driver Code public static void Main() { int n = 24; Console.WriteLine(divCount(n)); } } // This code is contributed // by mits |
PHP
<?php // PHP program for finding // number of divisor // program for finding // no. of divisors function divCount( $n ) { // sieve method for // prime calculation $hash = array_fill (0, $n + 1, 1); for ( $p = 2; ( $p * $p ) < $n ; $p ++) if ( $hash [ $p ] == 1) for ( $i = ( $p * 2); $i < $n ; $i = ( $i + $p )) $hash [ $i ] = 0; // Traversing through // all prime numbers $total = 1; for ( $p = 2; $p <= $n ; $p ++) { if ( $hash [ $p ] == 1) { // calculate number of divisor // with formula total div = // (p1+1) * (p2+1) *.....* (pn+1) // where n = (a1^p1)*(a2^p2).... // *(an^pn) ai being prime divisor // for n and pi are their respective // power in factorization $count = 0; if ( $n % $p == 0) { while ( $n % $p == 0) { $n = ( $n / $p ); $count ++; } $total = $total * ( $count + 1); } } } return $total ; } // Driver Code $n = 24; echo divCount( $n ); // This code is contributed by mits ?> |
Javascript
<script> // Javascript program for finding number of divisor // program for finding no. of divisors function divCount(n) { // sieve method for prime calculation var hash = Array(n+1).fill( true ); for ( var p = 2; p * p < n; p++) if (hash[p] == true ) for ( var i = p * 2; i < n; i += p) hash[i] = false ; // Traversing through all prime numbers var total = 1; for ( var p = 2; p <= n; p++) { if (hash[p]) { // calculate number of divisor // with formula total div = // (p1+1) * (p2+1) *.....* (pn+1) // where n = (a1^p1)*(a2^p2).... // *(an^pn) ai being prime divisor // for n and pi are their respective // power in factorization var count = 0; if (n % p == 0) { while (n % p == 0) { n = parseInt(n / p); count++; } total = total * (count + 1); } } } return total; } // driver program var n = 24; document.write( divCount(n)); </script> |
8
Reference : Number of divisors.
This article is contributed by Shivam Pradhan (anuj_charm). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...