Skip to content
Related Articles

Related Articles

Improve Article

Count all pairs of divisors of a number N whose sum is coprime with N

  • Last Updated : 03 Mar, 2021

Given an integer N, the task is to count all pairs of divisors of N such that the sum of each pair is coprime with N.
Examples: 
 

Input: N = 24 
Output:
Explaination: 
There are 2 pairs (1, 24) and (2, 3) whose sum is coprime with 24
Input: 105 
Output:
Explaination: 
There are 4 pairs (1, 105), (3, 35), (5, 21) and (7, 15) whose sum is coprime with 105 
 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

 

Approach:
To solve the problem mentioned above we can easily calculate the result by finding all divisors in √N complexity, and check for each pair, whether its sum is coprime with N or not.
Below is the implementation of the above approach:
 

C++




// C++ program to count all pairs
// of divisors such that their sum
// is coprime with N
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate GCD
int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return (gcd(b, a % b));
}
 
// Function to count all valid pairs
int CountPairs(int n)
{
 
    // Initialize count
    int cnt = 0;
 
    for (int i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            int div1 = i;
 
            int div2 = n / i;
 
            int sum = div1 + div2;
 
            // Check if sum of pair
            // and n are coprime
            if (gcd(sum, n) == 1)
 
                cnt += 1;
        }
    }
 
    // Return the result
    return cnt;
}
 
// Driver code
int main()
{
 
    int n = 24;
 
    cout << CountPairs(n) << endl;
 
    return 0;
}

Java




// Java program to count all pairs
// of divisors such that their sum
// is coprime with N
import java.util.*;
 
class GFG{
 
// Function to calculate GCD
public static int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return (gcd(b, a % b));
}
 
// Function to count all valid pairs
public static int CountPairs(int n)
{
 
    // Initialize count
    int cnt = 0;
 
    for(int i = 1; i * i <= n; i++)
    {
       if (n % i == 0)
       {
           int div1 = i;
           int div2 = n / i;
           int sum = div1 + div2;
            
           // Check if sum of pair
           // and n are coprime
           if (gcd(sum, n) == 1)
               cnt += 1;
       }
    }
 
    // Return the result
    return cnt;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 24;
 
    System.out.println(CountPairs(n));
}
}
 
// This code is contributed by equbalzeeshan

Python3




# Python3 program to count all pairs
# of divisors such that their sum
# is coprime with N
import math as m
 
 
# Function to count all valid pairs
def CountPairs(n):
     
    # initialize count
    cnt = 0
     
    i = 1
     
    while i * i <= n :
         
        if(n % i == 0):
             
            div1 = i
            div2 = n//i
             
            sum = div1 + div2;
             
            # Check if sum of pair
            # and n are coprime
            if( m.gcd(sum, n) == 1):
                cnt += 1
         
        i += 1
     
    # Return the result
    return cnt
     
 
# Driver code
n = 24
 
print(CountPairs(n))

C#




// C# program to count all pairs of
// divisors such that their sum
// is coprime with N
using System;
 
class GFG {
 
    // Function to find gcd of a and b
    static int gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
 
    // Function to count all valid pairs
    static int CountPairs(int n)
    {
 
        // Initialize count
        int cnt = 0;
 
        for (int i = 1; i * i <= n; i++) {
            if (n % i == 0) {
                int div1 = i;
 
                int div2 = n / i;
 
                int sum = div1 + div2;
 
                // Check if sum of pair
                // and n are coprime
                if (gcd(sum, n) == 1)
                    cnt += 1;
            }
        }
        // Return the result
        return cnt;
    }
 
    // Driver method
    public static void Main()
    {
        int n = 24;
 
        Console.WriteLine(CountPairs(n));
    }
}

Javascript




<script>
 
// JavaScript program to count all pairs
// of divisors such that their sum
// is coprime with N
 
// Function to calculate GCD
function gcd(a, b)
{
    if (b == 0)
        return a;
 
    return (gcd(b, a % b));
}
 
// Function to count all valid pairs
function CountPairs(n)
{
 
    // Initialize count
    let cnt = 0;
 
    for (let i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            let div1 = i;
 
            let div2 = Math.floor(n / i);
 
            let sum = div1 + div2;
 
            // Check if sum of pair
            // and n are coprime
            if (gcd(sum, n) == 1)
 
                cnt += 1;
        }
    }
 
    // Return the result
    return cnt;
}
 
// Driver code
    let n = 24;
 
    document.write(CountPairs(n) + "<br>");
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Output: 
2

 

Time Complexity: O(√N * log(N))
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :