Count number of ways to reach destination in a Maze using BFS

Given a maze with obstacles, count number of paths to reach rightmost-bottom most cell from the topmost-leftmost cell. A cell in the given maze has value -1 if it is a blockage or dead-end, else 0.
From a given cell, we are allowed to move to cells (i+1, j) and (i, j+1) only.

Examples:

Input: mat[][] = {
{1, 0, 0, 1},
{1, 1, 1, 1},
{1, 0, 1, 1}}
Output: 2

Input: mat[][] = {
{1, 1, 1, 1},
{1, 0, 1, 1},
{0, 1, 1, 1},
{1, 1, 1, 1}}
Output: 4

Approach: The idea is to use a queue and apply bfs and use a variable count to store the number of possible paths. Make a pair of row and column and insert (0, 0) into the queue. Now keep popping pairs from queue, if the popped value is the end of matrix then increment count, otherwise check if the next column can give a valid move or the next row can give a valid move and according to that, insert the corresponding row, column pair into the queue.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
#define m 4
#define n 3
  
// Function to return the number of valid
// paths in the given maze
int Maze(int matrix[n][m])
{
    queue<pair<int, int> > q;
  
    // Insert the starting point i.e.
    // (0, 0) in the queue
    q.push(make_pair(0, 0));
  
    // To store the count of possible paths
    int count = 0;
  
    while (!q.empty()) {
        pair<int, int> p = q.front();
        q.pop();
  
        // Increment the count of paths since
        // it is the destination
        if (p.first == n - 1 && p.second == m - 1)
            count++;
  
        // If moving to the next row is a valid move
        if (p.first + 1 < n
            && matrix[p.first + 1][p.second] == 1) {
            q.push(make_pair(p.first + 1, p.second));
        }
  
        // If moving to the next column is a valid move
        if (p.second + 1 < m
            && matrix[p.first][p.second + 1] == 1) {
            q.push(make_pair(p.first, p.second + 1));
        }
    }
  
    return count;
}
  
// Driver code
int main()
{
    // Matrix to represent maze
    int matrix[n][m] = { { 1, 0, 0, 1 },
                         { 1, 1, 1, 1 },
                         { 1, 0, 1, 1 } };
  
    cout << Maze(matrix);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
class GFG
{
static int m = 4;
static int n = 3;
static class pair 
    int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
}
  
// Function to return the number of valid
// paths in the given maze
static int Maze(int matrix[][])
{
    Queue<pair> q = new LinkedList<>();
  
    // Insert the starting point i.e.
    // (0, 0) in the queue
    q.add(new pair(0, 0));
  
    // To store the count of possible paths
    int count = 0;
  
    while (!q.isEmpty()) 
    {
        pair p = q.peek();
        q.remove();
  
        // Increment the count of paths since
        // it is the destination
        if (p.first == n - 1 && p.second == m - 1)
            count++;
  
        // If moving to the next row is a valid move
        if (p.first + 1 < n && 
            matrix[p.first + 1][p.second] == 1)
        {
            q.add(new pair(p.first + 1, p.second));
        }
  
        // If moving to the next column is a valid move
        if (p.second + 1 < m && 
            matrix[p.first][p.second + 1] == 1)
        {
            q.add(new pair(p.first, p.second + 1));
        }
    }
    return count;
}
  
// Driver code
public static void main(String[] args) 
{
    // Matrix to represent maze
    int matrix[][] = {{ 1, 0, 0, 1 },
                      { 1, 1, 1, 1 },
                      { 1, 0, 1, 1 }};
  
    System.out.println(Maze(matrix));
}
}
  
// This code is contributed by Princi Singh

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
from collections import deque
m = 4
n = 3
  
# Function to return the number of valid
# paths in the given maze
def Maze(matrix):
    q = deque()
  
    # Insert the starting poi.e.
    # (0, 0) in the queue
    q.append((0, 0))
  
    # To store the count of possible paths
    count = 0
  
    while (len(q) > 0):
        p = q.popleft()
  
        # Increment the count of paths since
        # it is the destination
        if (p[0] == n - 1 and p[1] == m - 1):
            count += 1
  
        # If moving to the next row is a valid move
        if (p[0] + 1 < n and
            matrix[p[0] + 1][p[1]] == 1):
            q.append((p[0] + 1, p[1]))
  
        # If moving to the next column is a valid move
        if (p[1] + 1 < m and 
            matrix[p[0]][p[1] + 1] == 1):
            q.append((p[0], p[1] + 1))
  
    return count
  
# Driver code
  
# Matrix to represent maze
matrix = [ [ 1, 0, 0, 1 ],
           [ 1, 1, 1, 1 ],
           [ 1, 0, 1, 1 ] ]
  
print(Maze(matrix))
      
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
using System.Collections.Generic;
  
class GFG
{
static int m = 4;
static int n = 3;
class pair 
    public int first, second; 
    public pair(int first, int second) 
    
        this.first = first; 
        this.second = second; 
    
}
  
// Function to return the number of valid
// paths in the given maze
static int Maze(int [,]matrix)
{
    Queue<pair> q = new Queue<pair>();
  
    // Insert the starting point i.e.
    // (0, 0) in the queue
    q.Enqueue(new pair(0, 0));
  
    // To store the count of possible paths
    int count = 0;
  
    while (q.Count != 0) 
    {
        pair p = q.Peek();
        q.Dequeue();
  
        // Increment the count of paths since
        // it is the destination
        if (p.first == n - 1 && p.second == m - 1)
            count++;
  
        // If moving to the next row is a valid move
        if (p.first + 1 < n && 
            matrix[p.first + 1, p.second] == 1)
        {
            q.Enqueue(new pair(p.first + 1, p.second));
        }
  
        // If moving to the next column is a valid move
        if (p.second + 1 < m && 
            matrix[p.first, p.second + 1] == 1)
        {
            q.Enqueue(new pair(p.first, p.second + 1));
        }
    }
    return count;
}
  
// Driver code
public static void Main(String[] args) 
{
    // Matrix to represent maze
    int [,]matrix = {{ 1, 0, 0, 1 },
                     { 1, 1, 1, 1 },
                     { 1, 0, 1, 1 }};
  
    Console.WriteLine(Maze(matrix));
}
}
  
// This code is contributed by PrinciRaj1992 

chevron_right


Output:

2


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.