# Print all paths from a given source to a destination using BFS

Given a directed graph, a source vertex ‘src’ and a destination vertex ‘dst’, print all paths from given ‘src’ to ‘dst’.

Consider the following directed graph. Let the src be 2 and dst be 3. There are 3 different paths from 2 to 3. ## Recommended: Please solve it on “PRACTICE” first, before moving on to the solution.

We have already discussed Print all paths from a given source to a destination using DFS.

Below is BFS based solution.

Algorithm :

```create a queue which will store path(s) of type vector
initialise the queue with first path starting from src

Now run a loop till queue is not empty
get the frontmost path from queue
check if the lastnode of this path is destination
if true then print the path
run a loop for all the vertices connected to the
current vertex i.e. lastnode extracted from path
if the vertex is not visited in current path
a) create a new path from earlier path and
append this vertex
b) insert this new path to queue
```

 `// CPP program to print all paths of source to ` `// destination in given graph ` `#include ` `using` `namespace` `std; ` ` `  `// utility function for printing ` `// the found path in graph ` `void` `printpath(vector<``int``>& path) ` `{ ` `    ``int` `size = path.size(); ` `    ``for` `(``int` `i = 0; i < size; i++)  ` `        ``cout << path[i] << ``" "``;     ` `    ``cout << endl; ` `} ` ` `  `// utility function to check if current ` `// vertex is already present in path ` `int` `isNotVisited(``int` `x, vector<``int``>& path) ` `{ ` `    ``int` `size = path.size(); ` `    ``for` `(``int` `i = 0; i < size; i++)  ` `        ``if` `(path[i] == x)  ` `            ``return` `0;  ` `    ``return` `1; ` `} ` ` `  `// utility function for finding paths in graph ` `// from source to destination ` `void` `findpaths(vector >&g, ``int` `src,  ` `                                 ``int` `dst, ``int` `v) ` `{ ` `    ``// create a queue which stores ` `    ``// the paths ` `    ``queue > q; ` ` `  `    ``// path vector to store the current path ` `    ``vector<``int``> path; ` `    ``path.push_back(src); ` `    ``q.push(path); ` `    ``while` `(!q.empty()) { ` `        ``path = q.front(); ` `        ``q.pop(); ` `        ``int` `last = path[path.size() - 1]; ` ` `  `        ``// if last vertex is the desired destination ` `        ``// then print the path ` `        ``if` `(last == dst)  ` `            ``printpath(path);         ` ` `  `        ``// traverse to all the nodes connected to  ` `        ``// current vertex and push new path to queue ` `        ``for` `(``int` `i = 0; i < g[last].size(); i++) { ` `            ``if` `(isNotVisited(g[last][i], path)) { ` `                ``vector<``int``> newpath(path); ` `                ``newpath.push_back(g[last][i]); ` `                ``q.push(newpath); ` `            ``} ` `        ``} ` `    ``} ` `} ` ` `  `// driver program ` `int` `main() ` `{ ` `    ``vector > g; ` `    ``// number of vertices ` `    ``int` `v = 4; ` `    ``g.resize(4); ` ` `  `    ``// construct a graph ` `    ``g.push_back(3); ` `    ``g.push_back(1); ` `    ``g.push_back(2); ` `    ``g.push_back(3); ` `    ``g.push_back(0); ` `    ``g.push_back(1); ` ` `  `    ``int` `src = 2, dst = 3; ` `    ``cout << ``"path from src "` `<< src ` `         ``<< ``" to dst "` `<< dst << ``" are \n"``; ` ` `  `    ``// function for finding the paths ` `    ``findpaths(g, src, dst, v); ` ` `  `    ``return` `0; ` `} `

Output:

```path from src 2 to dst 3 are
2 0 3
2 1 3
2 0 1 3
```

This article is contributed by Mandeep Singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up
Article Tags :
Practice Tags :

12

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.