Count natural numbers whose all permutation are greater than that number

There are some natural number whose all permutation is greater than or equal to that number eg. 123, whose all the permutation (123, 231, 321) are greater than or equal to 123.

Given a natural number n, the task is to count all such number from 1 to n.

Examples:

Input : n = 15.
Output : 14
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 
13, 14, 15 are the numbers whose all 
permutation is greater than the number
itself. So, output 14.

Input : n = 100.
Output : 54

A simple solution is to run a loop from 1 to n and for every number check if its digits are in non-decreasing order or not.

An efficient solution is based on below observations.

Observation 1: From 1 to 9, all number have this property. So, for n <= 9, output n.
Observation 2: The number whose all permutation is greater than or equal to that number have all their digits in increasing order.

The idea is to push all the number from 1 to 9. Now, pop the top element, say topel and try to make number whose digits are in increasing order and the first digit is topel. To make such numbers, the second digit can be from topel%10 to 9. If this number is less than n, increment the count and push the number in the stack, else ignore.

Below is the implementation of this approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to count the number less than N,
// whose all permutation is greater than or equal to the number.
#include<bits/stdc++.h>
using namespace std;
  
// Return the count of the number having all
// permutation greater than or equal to the number.
int countNumber(int n)
{
    int result = 0;
  
    // Pushing 1 to 9 because all number from 1
    // to 9 have this property.
    for (int i = 1; i <= 9; i++)
    {
        stack<int> s;
        if (i <= n)
        {
            s.push(i);
            result++;
        }
  
        // take a number from stack and add
        // a digit smaller than last digit
        // of it.
        while (!s.empty())
        {
            int tp = s.top();
            s.pop();
            for (int j = tp%10; j <= 9; j++)
            {
                int x = tp*10 + j;
                if (x <= n)
                {
                    s.push(x);
                    result++;
                }
            }
        }
    }
  
    return result;
}
  
// Driven Program
int main()
{
    int n = 15;
    cout << countNumber(n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

import java.util.Stack;
  
// Java program to count the number less than N,
// whose all permutation is greater than or equal to the number.
class GFG {
// Return the count of the number having all
// permutation greater than or equal to the number.
  
    static int countNumber(int n) {
        int result = 0;
  
        // Pushing 1 to 9 because all number from 1
        // to 9 have this property.
        for (int i = 1; i <= 9; i++) {
            Stack<Integer> s = new Stack<>();
            if (i <= n) {
                s.push(i);
                result++;
            }
  
            // take a number from stack and add
            // a digit smaller than last digit
            // of it.
            while (!s.empty()) {
                int tp = s.peek();
                s.pop();
                for (int j = tp % 10; j <= 9; j++) {
                    int x = tp * 10 + j;
                    if (x <= n) {
                        s.push(x);
                        result++;
                    }
                }
            }
        }
  
        return result;
    }
  
// Driven Program
    public static void main(String[] args) {
        int n = 15;
        System.out.println(countNumber(n));
  
    }
}
  
//this code contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to count the number less 
# than N, whose all permutation is greater 
# than or equal to the number. 
  
# Return the count of the number having 
# all permutation greater than or equal 
# to the number. 
def countNumber(n):
    result = 0
  
    # Pushing 1 to 9 because all number 
    # from 1 to 9 have this property.
    for i in range(1, 10):
        s = [] 
        if (i <= n):
            s.append(i) 
            result += 1
  
        # take a number from stack and add 
        # a digit smaller than last digit 
        # of it. 
        while len(s) != 0:
            tp = s[-1
            s.pop()
            for j in range(tp % 10, 10):
                x = tp * 10 +
                if (x <= n):
                    s.append(x) 
                    result += 1
  
    return result
  
# Driver Code
if __name__ == '__main__':
  
    n = 15
    print(countNumber(n))
  
# This code is contributed by PranchalK

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to count the number less than N, 
// whose all permutation is greater than 
// or equal to the number.
using System;
using System.Collections.Generic; 
  
class GFG 
{
  
// Return the count of the number 
// having all permutation greater than
// or equal to the number. 
static int countNumber(int n)
    int result = 0; 
  
    // Pushing 1 to 9 because all number from 1 
    // to 9 have this property. 
    for (int i = 1; i <= 9; i++)
    
        Stack<int> s = new Stack<int>(); 
        if (i <= n)
        
            s.Push(i); 
            result++; 
        
  
        // take a number from stack and add 
        // a digit smaller than last digit 
        // of it. 
        while (s.Count != 0) 
        
            int tp = s.Peek(); 
            s.Pop(); 
            for (int j = tp % 10; j <= 9; j++)
            
                int x = tp * 10 + j; 
                if (x <= n) 
                
                    s.Push(x); 
                    result++; 
                
            
        
    
  
    return result; 
  
// Driver Code
public static void Main(String[] args) 
    int n = 15; 
    Console.WriteLine(countNumber(n)); 
  
// This code is contributed by Rajput-Ji

chevron_right



Output:

14

Time Complexity : O(x) where x is number of elements printed in output.

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.