# Count Magic squares in a grid

Given an **Grid **of integers. The task is to find total numbers of 3 x 3 (contiguous) **Magic Square subgrid**s in the given grid. A Magic square is a 3 x 3 grid filled with all distinct numbers from 1 to 9 such that each row, column, and both diagonals have equal sum.

**Examples:**

Input: G = { { 4, 3, 8, 4 }, { 9, 5, 1, 9 }, { 2, 7, 6, 2 } }

Output: 1

Explanation: The following subgrid is a 3 x 3 magic square: [ 4 3 8, 9 5 1, 2 7 6 ]Input : G = { { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 10 }, { 10, 11, 12, 13, 14 }, { 15, 16, 17, 18, 19 } }

Output : 0

**Approach:** Let us check every 3 x 3 subgrid individually. For each grid, all numbers must be unique and between **(1 and 9) **also every **rows**, **columns**, and both **diagonals **must have the equal sum.

Also notice the fact that a subgrid is a Magic Square if its middle element is 5. Because adding the 12 values from the four lines that crosses the center, add up to 60, but they also add up to the entire grid (45), plus 3 times the middle value. This implies the middle value is 5. Hence we can check this condition which help us skip over various subgrids.

You can learn more about Magic_square here or here.

The procedure to check for a subgrid to be a Magic Square is as follows:

The middle element must be 5. The sum of the grid must be 45, and contains all distinct values from 1 to 9. Each horizontal(row) and vertical(column) must add up to 15. Both of the diagonal lines must also sum to 15.

**Below is the implementation of above approach:**

## C++

`// CPP program to count magic squares ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `const` `int` `R = 3; ` `const` `int` `C = 4; ` ` ` `// function to check is subgrid is Magic Square ` `int` `magic(` `int` `a, ` `int` `b, ` `int` `c, ` `int` `d, ` `int` `e, ` ` ` `int` `f, ` `int` `g, ` `int` `h, ` `int` `i) ` `{ ` ` ` `set<` `int` `> s1 = { a, b, c, d, e, f, g, h, i }, ` ` ` `s2 = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; ` ` ` ` ` `// Elements of grid must contain all numbers from 1 to ` ` ` `// 9, sum of all rows, columns and diagonals must be ` ` ` `// same, i.e., 15. ` ` ` `if` `(s1 == s2 && (a + b + c) == 15 && (d + e + f) == 15 && ` ` ` `(g + h + i) == 15 && (a + d + g) == 15 && ` ` ` `(b + e + h) == 15 && (c + f + i) == 15 && ` ` ` `(a + e + i) == 15 && (c + e + g) == 15) ` ` ` `return` `true` `; ` ` ` `return` `false` `; ` `} ` ` ` `// Function to cound total Magic square subgrids ` `int` `CountMagicSquare(` `int` `Grid[R][C]) ` `{ ` ` ` `int` `ans = 0; ` ` ` ` ` `for` `(` `int` `i = 0; i < R - 2; i++) ` ` ` `for` `(` `int` `j = 0; j < C - 2; j++) { ` ` ` ` ` `// if condition true skip check ` ` ` `if` `(Grid[i + 1][j + 1] != 5) ` ` ` `continue` `; ` ` ` ` ` `// check for magic square subgrid ` ` ` `if` `(magic(Grid[i][j], Grid[i][j + 1], ` ` ` `Grid[i][j + 2], Grid[i + 1][j], ` ` ` `Grid[i + 1][j + 1], Grid[i + 1][j + 2], ` ` ` `Grid[i + 2][j], Grid[i + 2][j + 1], ` ` ` `Grid[i + 2][j + 2])) ` ` ` ` ` `ans += 1; ` ` ` `} ` ` ` ` ` `// return total magic square ` ` ` `return` `ans; ` `} ` ` ` `// Driver program ` `int` `main() ` `{ ` ` ` `int` `G[R][C] = { { 4, 3, 8, 4 }, ` ` ` `{ 9, 5, 1, 9 }, ` ` ` `{ 2, 7, 6, 2 } }; ` ` ` ` ` `// function call to print required answer ` ` ` `cout << CountMagicSquare(G); ` ` ` ` ` `return` `0; ` `} ` ` ` `// This code is written by Sanjit_Prasad ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program to count magic squares ` `R ` `=` `3` `C ` `=` `4` ` ` `# function to check is subgrid is Magic Square ` `def` `magic(a, b, c, d, e, f, g, h, i): ` ` ` ` ` `s1 ` `=` `set` `([a, b, c, d, e, f, g, h, i]) ` ` ` `s2 ` `=` `set` `([` `1` `, ` `2` `, ` `3` `, ` `4` `, ` `5` `, ` `6` `, ` `7` `, ` `8` `, ` `9` `]) ` ` ` ` ` `# Elements of grid must contain all numbers ` ` ` `# from 1 to 9, sum of all rows, columns and ` ` ` `# diagonals must be same, i.e., 15. ` ` ` `if` `(s1 ` `=` `=` `s2 ` `and` `(a ` `+` `b ` `+` `c) ` `=` `=` `15` `and` ` ` `(d ` `+` `e ` `+` `f) ` `=` `=` `15` `and` `(g ` `+` `h ` `+` `i) ` `=` `=` `15` `and` ` ` `(a ` `+` `d ` `+` `g) ` `=` `=` `15` `and` `(b ` `+` `e ` `+` `h) ` `=` `=` `15` `and` ` ` `(c ` `+` `f ` `+` `i) ` `=` `=` `15` `and` `(a ` `+` `e ` `+` `i) ` `=` `=` `15` `and` ` ` `(c ` `+` `e ` `+` `g) ` `=` `=` `15` `): ` ` ` `return` `True` ` ` ` ` `return` `false ` ` ` `# Function to cound total Magic square subgrids ` `def` `CountMagicSquare(Grid): ` ` ` ` ` `ans ` `=` `0` ` ` ` ` `for` `i ` `in` `range` `(` `0` `, R ` `-` `2` `): ` ` ` `for` `j ` `in` `range` `(` `0` `, C ` `-` `2` `): ` ` ` ` ` `# if condition true skip check ` ` ` `if` `Grid[i ` `+` `1` `][j ` `+` `1` `] !` `=` `5` `: ` ` ` `continue` ` ` ` ` `# check for magic square subgrid ` ` ` `if` `(magic(Grid[i][j], Grid[i][j ` `+` `1` `], ` ` ` `Grid[i][j ` `+` `2` `], Grid[i ` `+` `1` `][j], ` ` ` `Grid[i ` `+` `1` `][j ` `+` `1` `], Grid[i ` `+` `1` `][j ` `+` `2` `], ` ` ` `Grid[i ` `+` `2` `][j], Grid[i ` `+` `2` `][j ` `+` `1` `], ` ` ` `Grid[i ` `+` `2` `][j ` `+` `2` `]) ` `=` `=` `True` `): ` ` ` ` ` `ans ` `+` `=` `1` ` ` ` ` `# return total magic square ` ` ` `return` `ans ` ` ` `# Driver Code ` `if` `__name__ ` `=` `=` `"__main__"` `: ` ` ` ` ` `G ` `=` `[[` `4` `, ` `3` `, ` `8` `, ` `4` `], ` ` ` `[` `9` `, ` `5` `, ` `1` `, ` `9` `], ` ` ` `[` `2` `, ` `7` `, ` `6` `, ` `2` `]] ` ` ` ` ` `# Function call to print required answer ` ` ` `print` `(CountMagicSquare(G)) ` ` ` `# This code is contributed by Rituraj Jain ` |

*chevron_right*

*filter_none*

**Output:**

1

**Time Complexity:** O(R * C)

## Recommended Posts:

- Count possible moves in the given direction in a grid
- Count pairs (a, b) whose sum of squares is N (a^2 + b^2 = N)
- Count number of squares in a rectangle
- Count squares with odd side length in Chessboard
- Count number less than N which are product of perfect squares
- Count the total number of squares that can be visited by Bishop in one move
- Program to count number of distinct Squares and Cubes upto N
- Number of rectangles in N*M grid
- Cost of painting n * m grid
- Minimum sum falling path in a NxN grid
- Largest connected component on a grid
- Maximum sum in a 2 x n grid such that no two elements are adjacent
- Unique paths in a Grid with Obstacles
- Search a Word in a 2D Grid of characters
- Minimum distance to the end of a grid from source

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.