Count lexicographically increasing K-length strings possible from first N alphabets
Given two positive integers N and K, the task is to find the number of K length strings that can be generated from the first N alphabets such that the characters in the string are sorted lexicographically.
Examples:
Input: N = 5, K = 2
Output: 15
Explanation: All possible strings are {“AA”, “AB”, “AC”, “AD”, “AE”, “BB”, “BC”, “BD”, “BE”, “CC”, “CD”, “CE”, “DD”, “DE”, “EE”}.Input: N = 7, K = 10
Output: 8008
Naive Approach: The simplest approach to solve the problem is to use Recursion and Backtracking to generate all possible arrangements of characters and for each string, check if the characters follow a lexicographically increasing order or not. Print the count of all such strings.
Time Complexity: O(KN)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Dynamic Programming as there are overlapping subproblems that can be memoized or tabulated in the recursive calls by using an auxiliary 2D array dp[][] and calculate the value of each state in the bottom-up approach.
dp[i][j] represents the number of ways to arrange “i” length strings with the “j” distinct letters.
dp[i][j] = dp[i][j – 1] (Choose not to start with first letter)
+ dp[i – 1][j – 1] (Choose first 1 letter in string as first letter)
+ dp[i – 2][j – 1] (Choose first 2 letters in string as first letter)
+ ….
+ ….
+ dp[0][j – 1] (Choose first i letters in string as first letter)
dp[i][j] = Sum of all values of (j-1)th column for “i” rows
Follow the steps below to solve this problem:
- Initialize an array columnSum[] of size (N+1), where columnSum[i] is sum of all values in column “j” of the array dp[][].
- Initialize a dp[][] table of size (K + 1)*(N + 1).
- Initialize dp[0][i] as 1 and subsequently update array columnSum[].
- Iterate two nested loops over K and using the variable i and j respectively:
- Store dp[i][j] as columnSum[j – 1].
- Update columnSum[j] as columnSum[j] + dp[i][j].
- After the above steps, print the value of dp[K][N] as the resultant number of ways.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to count K-length // strings from first N alphabets void waysToArrangeKLengthStrings( int N, int K) { // To keep track of column sum in dp int column_sum[N + 1] = { 0 }, i, j; // Auxiliary 2d dp array int dp[K + 1][N + 1] = { 0 }; // Initialize dp[0][i] = 1 and // update the column_sum for (i = 0; i <= N; i++) { dp[0][i] = 1; column_sum[i] = 1; } // Iterate for K times for (i = 1; i <= K; i++) { // Iterate for N times for (j = 1; j <= N; j++) { // dp[i][j]: Stores the number // of ways to form i-length // strings consisting of j letters dp[i][j] += column_sum[j - 1]; // Update the column_sum column_sum[j] += dp[i][j]; } } // Print number of ways to arrange // K-length strings with N alphabets cout << dp[K][N]; } // Driver Code int main() { // Given N and K int N = 5, K = 2; // Function Call waysToArrangeKLengthStrings(N, K); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to count K-length // strings from first N alphabets static void waysToArrangeKLengthStrings( int N, int K) { // To keep track of column sum in dp int [] column_sum = new int [N + 1 ]; int i, j; for (i = 1 ; i < N + 1 ; i++) { column_sum[i] = 0 ; } // Auxiliary 2d dp array int dp[][] = new int [K + 1 ][N + 1 ]; for (i = 1 ; i < K + 1 ; i++) { for (j = 1 ; j < N + 1 ; j++) { dp[i][j] = 0 ; } } // Initialize dp[0][i] = 1 and // update the column_sum for (i = 0 ; i <= N; i++) { dp[ 0 ][i] = 1 ; column_sum[i] = 1 ; } // Iterate for K times for (i = 1 ; i <= K; i++) { // Iterate for N times for (j = 1 ; j <= N; j++) { // dp[i][j]: Stores the number // of ways to form i-length // strings consisting of j letters dp[i][j] += column_sum[j - 1 ]; // Update the column_sum column_sum[j] += dp[i][j]; } } // Print number of ways to arrange // K-length strings with N alphabets System.out.print(dp[K][N]); } // Driver Code public static void main(String[] args) { // Given N and K int N = 5 , K = 2 ; // Function Call waysToArrangeKLengthStrings(N, K); } } // This code is contributed by susmitakundugoaldanga |
Python3
# Python3 program for the above approach # Function to count K-length # strings from first N alphabets def waysToArrangeKLengthStrings(N, K): # To keep track of column sum in dp column_sum = [ 0 for i in range (N + 1 )] i = 0 j = 0 # Auxiliary 2d dp array dp = [[ 0 for i in range (N + 1 )] for j in range (K + 1 )] # Initialize dp[0][i] = 1 and # update the column_sum for i in range (N + 1 ): dp[ 0 ][i] = 1 column_sum[i] = 1 # Iterate for K times for i in range ( 1 , K + 1 ): # Iterate for N times for j in range ( 1 , N + 1 ): # dp[i][j]: Stores the number # of ways to form i-length # strings consisting of j letters dp[i][j] + = column_sum[j - 1 ] # Update the column_sum column_sum[j] + = dp[i][j] # Print number of ways to arrange # K-length strings with N alphabets print (dp[K][N]) # Driver Code if __name__ = = '__main__' : # Given N and K N = 5 K = 2 # Function Call waysToArrangeKLengthStrings(N, K) # This code is contributed by SURENDRA_GANGWAR |
C#
// C# program for the above approach using System; class GFG{ // Function to count K-length // strings from first N alphabets static void waysToArrangeKLengthStrings( int N, int K) { // To keep track of column sum in dp int [] column_sum = new int [N + 1]; int i, j; for (i = 1; i < N + 1; i++) { column_sum[i] = 0; } // Auxiliary 2d dp array int [,] dp = new int [K + 1, N + 1]; for (i = 1; i < K + 1; i++) { for (j = 1; j < N + 1; j++) { dp[i, j] = 0; } } // Initialize dp[0][i] = 1 and // update the column_sum for (i = 0; i <= N; i++) { dp[0, i] = 1; column_sum[i] = 1; } // Iterate for K times for (i = 1; i <= K; i++) { // Iterate for N times for (j = 1; j <= N; j++) { // dp[i][j]: Stores the number // of ways to form i-length // strings consisting of j letters dp[i, j] += column_sum[j - 1]; // Update the column_sum column_sum[j] += dp[i, j]; } } // Print number of ways to arrange // K-length strings with N alphabets Console.Write(dp[K, N]); } // Driver Code public static void Main() { // Given N and K int N = 5, K = 2; // Function Call waysToArrangeKLengthStrings(N, K); } } // This code is contributed by code_hunt |
Javascript
<script> // Javascript program to implement // the above approach // Function to count K-length // strings from first N alphabets function waysToArrangeKLengthStrings(N, K) { // To keep track of column sum in dp let column_sum = []; let i, j; for (i = 1; i < N + 1; i++) { column_sum[i] = 0; } // Auxiliary 2d dp array let dp = new Array(K + 1); // Loop to create 2D array using 1D array for (i = 0; i < dp.length; i++) { dp[i] = new Array(2); } for (i = 1; i < K + 1; i++) { for (j = 1; j < N + 1; j++) { dp[i][j] = 0; } } // Initialize dp[0][i] = 1 and // update the column_sum for (i = 0; i <= N; i++) { dp[0][i] = 1; column_sum[i] = 1; } // Iterate for K times for (i = 1; i <= K; i++) { // Iterate for N times for (j = 1; j <= N; j++) { // dp[i][j]: Stores the number // of ways to form i-length // strings consisting of j letters dp[i][j] += column_sum[j - 1]; // Update the column_sum column_sum[j] += dp[i][j]; } } // Print number of ways to arrange // K-length strings with N alphabets document.write(dp[K][N]); } // Driver Code // Given N and K let N = 5, K = 2; // Function Call waysToArrangeKLengthStrings(N, K); // This code is contributed by splevel62. </script> |
15
Time Complexity: O(N*K)
Auxiliary Space: O(N*K)