Open In App
Related Articles

Count all possible values of K less than Y such that GCD(X, Y) = GCD(X+K, Y)

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers X and Y, the task is to find the number of integers, K, such that gcd(X, Y) is equal to gcd(X+K, Y), where 0 < K <Y.

Examples:

Input: X = 3, Y = 15
Output: 4
Explanation: All possible values of K are {0, 3, 6, 9} for which GCD(X, Y) = GCD(X + K, Y).

Input: X = 2, Y = 12
Output: 2
Explanation: All possible values of K are {0, 8}.

Naive Approach: The simplest approach to solve the problem is to iterate over the range [0, Y – 1]and for each value of i, check if GCD(X + i, Y) is equal to GCD(X, Y) or not.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <iostream>
using namespace std;
 
// Function to calculate
// GCD of two integers
int gcd(int a, int b)
{
    if (b == 0)
        return a;
 
    return gcd(b, a % b);
}
 
// Function to count possible
// values of K
int calculateK(int x, int y)
{
    int count = 0;
    int gcd_xy = gcd(x, y);
    for (int i = 0; i < y; i++) {
 
        // If required condition
        // is satisfied
        if (gcd(x + i, y) == gcd_xy)
 
            // Increase count
            count++;
    }
 
    return count;
}
 
// Driver Code
int main()
{
 
    // Given X and y
    int x = 3, y = 15;
 
    cout << calculateK(x, y) << endl;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
       
// Function to calculate
// GCD of two integers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;  
    return gcd(b, a % b);
}
   
// Function to count possible
// values of K
static int calculateK(int x, int y)
{
    int count = 0;
    int gcd_xy = gcd(x, y);
    for (int i = 0; i < y; i++)
    {
   
        // If required condition
        // is satisfied
        if (gcd(x + i, y) == gcd_xy)
   
            // Increase count
            count++;
    }  
    return count;
}
   
// Driver code
public static void main(String[] args)
{
    // Given X and y
    int x = 3, y = 15
    System.out.print(calculateK(x, y));
}
}
 
// This code is contributed by sanjoy_62


Python3




# Python3 program for the above approach
 
# Function to calculate
# GCD of two integers
def gcd(a, b):
     
    if (b == 0):
        return a
 
    return gcd(b, a % b)
 
# Function to count possible
# values of K
def calculateK(x, y):
     
    count = 0
    gcd_xy = gcd(x, y)
 
    for i in range(y):
         
        # If required condition
        # is satisfied
        if (gcd(x + i, y) == gcd_xy):
             
            # Increase count
            count += 1
 
    return count
 
# Driver Code
if __name__ == '__main__':
     
    # Given X and y
    x = 3
    y = 15
 
    print (calculateK(x, y))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
 
class GFG{
       
// Function to calculate
// GCD of two integers
static int gcd(int a, int b)
{
    if (b == 0)
        return a; 
         
    return gcd(b, a % b);
}
   
// Function to count possible
// values of K
static int calculateK(int x, int y)
{
    int count = 0;
    int gcd_xy = gcd(x, y);
     
    for(int i = 0; i < y; i++)
    {
         
        // If required condition
        // is satisfied
        if (gcd(x + i, y) == gcd_xy)
         
            // Increase count
            count++;
    }  
    return count;
}
   
// Driver code
public static void Main(String[] args)
{
     
    // Given X and y
    int x = 3, y = 15; 
     
    Console.Write(calculateK(x, y));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program for the above approach
 
    // Function to calculate
    // GCD of two integers
    function gcd(a , b) {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
 
    // Function to count possible
    // values of K
    function calculateK(x , y) {
        var count = 0;
        var gcd_xy = gcd(x, y);
        for (i = 0; i < y; i++) {
 
            // If required condition
            // is satisfied
            if (gcd(x + i, y) == gcd_xy)
 
                // Increase count
                count++;
        }
        return count;
    }
 
    // Driver code
     
        // Given X and y
        var x = 3, y = 15;
        document.write(calculateK(x, y));
 
// This code is contributed by todaysgaurav
 
</script>


Output: 

4

 

Time Complexity: O(YlogY)
Auxiliary Space: O(1)

Efficient Approach: The idea is to use the concept of Euler’s totient function. Follow the steps below to solve the problem: 

  • Calculate the gcd of X and Y and store it in a variable g.
  •  Initialize a variable n with Y/g.
  •  Now, find the totient function for n which will be the required answer.

Below is the implementation of the above approach:   

C++




// C++ program for the above approach
 
#include <iostream>
using namespace std;
 
// Function to find the gcd of a and b
int gcd(int a, int b)
{
 
    if (b == 0)
        return a;
 
    return gcd(b, a % b);
}
 
// Function to find the number of Ks
int calculateK(int x, int y)
{
 
    // Find gcd
    int g = gcd(x, y);
    int n = y / g;
    int res = n;
 
    // Calculating value of totient
    // function for n
    for (int i = 2; i * i <= n; i++) {
        if (n % i == 0) {
            res -= (res / i);
            while (n % i == 0)
                n /= i;
        }
    }
    if (n != 1)
        res -= (res / n);
    return res;
}
 
// Driver Code
int main()
{
 
    // Given X and Y
    int x = 3, y = 15;
 
    cout << calculateK(x, y) << endl;
}


Java




// Java program for the above approach
import java.util.*;
class GFG
{
 
// Function to find the gcd of a and b
static int gcd(int a, int b)
{
 
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to find the number of Ks
static int calculateK(int x, int y)
{
 
    // Find gcd
    int g = gcd(x, y);
    int n = y / g;
    int res = n;
 
    // Calculating value of totient
    // function for n
    for (int i = 2; i * i <= n; i++)
    {
        if (n % i == 0)
        {
            res -= (res / i);
            while (n % i == 0)
                n /= i;
        }
    }
    if (n != 1)
        res -= (res / n);
    return res;
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given X and Y
    int x = 3, y = 15;
    System.out.print(calculateK(x, y) +"\n");
}
}
 
// This code is contributed by shikhasingrajput


Python3




# Python 3 program for the above approach
 
# Function to find the gcd of a and b
def gcd(a, b):
    if (b == 0):
        return a
    return gcd(b, a % b)
 
# Function to find the number of Ks
def calculateK(x, y):
 
    # Find gcd
    g = gcd(x, y)
    n = y // g
    res = n
 
    # Calculating value of totient
    # function for n
    i = 2
    while i * i <= n:
        if (n % i == 0):
            res -= (res // i)
            while (n % i == 0):
                n //= i
        i += 1
    if (n != 1):
        res -= (res // n)
    return res
 
# Driver Code
if __name__ == "__main__":
 
    # Given X and Y
    x = 3
    y = 15
 
    print(calculateK(x, y))
     
    # This code is contributed by chitranayal.


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
         
    return gcd(b, a % b);
}
 
// Function to find the number of Ks
static int calculateK(int x, int y)
{
     
    // Find gcd
    int g = gcd(x, y);
    int n = y / g;
    int res = n;
 
    // Calculating value of totient
    // function for n
    for(int i = 2; i * i <= n; i++)
    {
        if (n % i == 0)
        {
            res -= (res / i);
             
            while (n % i == 0)
                n /= i;
        }
    }
    if (n != 1)
        res -= (res / n);
         
    return res;
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given X and Y
    int x = 3, y = 15;
     
    Console.Write(calculateK(x, y) + "\n");
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
// javascript program for the above approach
 
    // Function to find the gcd of a and b
    function gcd(a , b) {
 
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
 
    // Function to find the number of Ks
    function calculateK(x , y) {
 
        // Find gcd
        var g = gcd(x, y);
        var n = y / g;
        var res = n;
 
        // Calculating value of totient
        // function for n
        for (i = 2; i * i <= n; i++) {
            if (n % i == 0) {
                res -= (res / i);
                while (n % i == 0)
                    n /= i;
            }
        }
        if (n != 1)
            res -= (res / n);
        return res;
    }
 
    // Driver Code
     
        // Given X and Y
        var x = 3, y = 15;
        document.write(calculateK(x, y) + "\n");
 
// This code is contributed by umadevi9616
</script>


Output: 

4

 

Time Complexity: O(log(min(X, Y)) + ?N) where N is Y/gcd(X, Y).
Auxiliary Space: O(1)

 


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 14 Apr, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials