**Main Purposes: **

- Dijkstra’s Algorithm is one example of a single-source shortest or SSSP algorithm, i.e., given a source vertex it finds shortest path from source to all other vertices.
- Floyd Warshall Algorithm is an example of all-pairs shortest path algorithm, meaning it computes the shortest path between all pair of nodes.

**Time Complexities : **

- Time Complexity of Dijkstra’s Algorithm: O(E log V)
- Time Complexity of Floyd Warshall: O(V
^{3})

**Other Points:**

- We can use Dijskstra’s shortest path algorithm for finding all pair shortest paths by running it for every vertex. But time complexity of this would be O(VE Log V) which can go (V
^{3}Log V) in worst case. - Another important differentiating factor between the algorithms is their working towards distributed systems. Unlike Dijkstra’s algorithm, Floyd Warshall can be implemented in a distributed system, making it suitable for data structures such as Graph of Graphs (Used in Maps).
- Lastly Floyd Warshall works for negative edge but no negative cycle, whereas Dijkstra’s algorithm don’t work for negative edges.

This article is contributed by **Vineet Joshi**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

## Recommended Posts:

- Check if it is possible to reach a number by making jumps of two given length
- Finding the path from one vertex to rest using BFS
- Shortest Path using Meet In The Middle
- Printing pre and post visited times in DFS of a graph
- Minimum steps required to convert X to Y where a binary matrix represents the possible conversions
- Finding in and out degrees of all vertices in a graph
- Difference between graph and tree
- Minimum Numbers of cells that are connected with the smallest path between 3 given cells
- Check if the given graph represents a Star Topology
- Check if the given graph represents a Ring Topology
- Minimum Operations to make value of all vertices of the tree Zero
- Check if the given graph represents a Bus Topology
- Relabel-to-front Algorithm
- Dijkstra's shortest path algorithm in Java using PriorityQueue