Dijkstra’s Algorithm for Adjacency List Representation | Greedy Algo-8
We recommend reading the following two posts as a prerequisite for this post.
We have discussed Dijkstra’s algorithm and its implementation for adjacency matrix representation of graphs. The time complexity for the matrix representation is O(V^2). In this post, O(ELogV) algorithm for adjacency list representation is discussed.
As discussed in the previous post, in Dijkstra’s algorithm, two sets are maintained, one set contains a list of vertices already included in SPT (Shortest Path Tree), and another set contains vertices not yet included. With adjacency list representation, all vertices of a graph can be traversed in O(V+E) time using BFS. The idea is to traverse all vertices of the graph using BFS and use a Min Heap to store the vertices not yet included in SPT (or the vertices for which the shortest distance is not finalized yet). Min Heap is used as a priority queue to get the minimum distance vertex from a set of not yet included vertices. The time complexity of operations like extract-min and decrease-key value is O(LogV) for Min Heap.
Following are the detailed steps.
- Create a Min Heap of size V where V is the number of vertices in the given graph. Every node of the min-heap contains the vertex number and distance value of the vertex.
- Initialize Min Heap with source vertex as root (the distance value assigned to source vertex is 0). The distance value assigned to all other vertices is INF (infinite).
- While Min Heap is not empty, do the following :
- Extract the vertex with minimum distance value node from Min Heap. Let the extracted vertex be u.
- For every adjacent vertex v of u, check if v is in Min Heap. If v is in Min Heap and the distance value is more than the weight of u-v plus the distance value of u, then update the distance value of v.
Let us understand with the following example. Let the given source vertex be 0
Initially, the distance value of the source vertex is 0 and INF (infinite) for all other vertices. So source vertex is extracted from Min Heap and distance values of vertices adjacent to 0 (1 and 7) are updated. Min Heap contains all vertices except vertex 0.
The vertices in green color are the vertices for which minimum distances are finalized and are not in Min Heap
Since the distance value of vertex 1 is minimum among all nodes in Min Heap, it is extracted from Min Heap and distance values of vertices adjacent to 1 are updated (distance is updated if the vertex is in Min Heap and distance through 1 is shorter than the previous distance). Min Heap contains all vertices except vertex 0 and 1.
Pick the vertex with a minimum distance value from the min-heap. Vertex 7 is picked. So min-heap now contains all vertices except 0, 1, and 7. Update the distance values of adjacent vertices of 7. The distance value of vertex 6 and 8 becomes finite (15 and 9 respectively).
Pick the vertex with a minimum distance from the min-heap. Vertex 6 is picked. So min-heap now contains all vertices except 0, 1, 7, and 6. Update the distance values of adjacent vertices of 6. The distance value of vertex 5 and 8 are updated.
The above steps are repeated till the min-heap doesn’t become empty. Finally, we get the following shortest-path tree.
Below is the implementation of the above approach:
C++
// C / C++ program for Dijkstra's // shortest path algorithm for adjacency // list representation of graph #include <stdio.h> #include <stdlib.h> #include <limits.h> // A structure to represent a // node in adjacency list struct AdjListNode { int dest; int weight; struct AdjListNode* next; }; // A structure to represent // an adjacency list struct AdjList { // Pointer to head node of list struct AdjListNode *head; }; // A structure to represent a graph. // A graph is an array of adjacency lists. // Size of array will be V (number of // vertices in graph) struct Graph { int V; struct AdjList* array; }; // A utility function to create // a new adjacency list node struct AdjListNode* newAdjListNode( int dest, int weight) { struct AdjListNode* newNode = ( struct AdjListNode*) malloc ( sizeof ( struct AdjListNode)); newNode->dest = dest; newNode->weight = weight; newNode->next = NULL; return newNode; } // A utility function that creates // a graph of V vertices struct Graph* createGraph( int V) { struct Graph* graph = ( struct Graph*) malloc ( sizeof ( struct Graph)); graph->V = V; // Create an array of adjacency lists. // Size of array will be V graph->array = ( struct AdjList*) malloc (V * sizeof ( struct AdjList)); // Initialize each adjacency list // as empty by making head as NULL for ( int i = 0; i < V; ++i) graph->array[i].head = NULL; return graph; } // Adds an edge to an undirected graph void addEdge( struct Graph* graph, int src, int dest, int weight) { // Add an edge from src to dest. // A new node is added to the adjacency // list of src. The node is // added at the beginning struct AdjListNode* newNode = newAdjListNode(dest, weight); newNode->next = graph->array[src].head; graph->array[src].head = newNode; // Since graph is undirected, // add an edge from dest to src also newNode = newAdjListNode(src, weight); newNode->next = graph->array[dest].head; graph->array[dest].head = newNode; } // Structure to represent a min heap node struct MinHeapNode { int v; int dist; }; // Structure to represent a min heap struct MinHeap { // Number of heap nodes present currently int size; // Capacity of min heap int capacity; // This is needed for decreaseKey() int *pos; struct MinHeapNode **array; }; // A utility function to create a // new Min Heap Node struct MinHeapNode* newMinHeapNode( int v, int dist) { struct MinHeapNode* minHeapNode = ( struct MinHeapNode*) malloc ( sizeof ( struct MinHeapNode)); minHeapNode->v = v; minHeapNode->dist = dist; return minHeapNode; } // A utility function to create a Min Heap struct MinHeap* createMinHeap( int capacity) { struct MinHeap* minHeap = ( struct MinHeap*) malloc ( sizeof ( struct MinHeap)); minHeap->pos = ( int *) malloc ( capacity * sizeof ( int )); minHeap->size = 0; minHeap->capacity = capacity; minHeap->array = ( struct MinHeapNode**) malloc (capacity * sizeof ( struct MinHeapNode*)); return minHeap; } // A utility function to swap two // nodes of min heap. // Needed for min heapify void swapMinHeapNode( struct MinHeapNode** a, struct MinHeapNode** b) { struct MinHeapNode* t = *a; *a = *b; *b = t; } // A standard function to // heapify at given idx // This function also updates // position of nodes when they are swapped. // Position is needed for decreaseKey() void minHeapify( struct MinHeap* minHeap, int idx) { int smallest, left, right; smallest = idx; left = 2 * idx + 1; right = 2 * idx + 2; if (left < minHeap->size && minHeap->array[left]->dist < minHeap->array[smallest]->dist ) smallest = left; if (right < minHeap->size && minHeap->array[right]->dist < minHeap->array[smallest]->dist ) smallest = right; if (smallest != idx) { // The nodes to be swapped in min heap MinHeapNode *smallestNode = minHeap->array[smallest]; MinHeapNode *idxNode = minHeap->array[idx]; // Swap positions minHeap->pos[smallestNode->v] = idx; minHeap->pos[idxNode->v] = smallest; // Swap nodes swapMinHeapNode(&minHeap->array[smallest], &minHeap->array[idx]); minHeapify(minHeap, smallest); } } // A utility function to check if // the given minHeap is empty or not int isEmpty( struct MinHeap* minHeap) { return minHeap->size == 0; } // Standard function to extract // minimum node from heap struct MinHeapNode* extractMin( struct MinHeap* minHeap) { if (isEmpty(minHeap)) return NULL; // Store the root node struct MinHeapNode* root = minHeap->array[0]; // Replace root node with last node struct MinHeapNode* lastNode = minHeap->array[minHeap->size - 1]; minHeap->array[0] = lastNode; // Update position of last node minHeap->pos[root->v] = minHeap->size-1; minHeap->pos[lastNode->v] = 0; // Reduce heap size and heapify root --minHeap->size; minHeapify(minHeap, 0); return root; } // Function to decreasekey dist value // of a given vertex v. This function // uses pos[] of min heap to get the // current index of node in min heap void decreaseKey( struct MinHeap* minHeap, int v, int dist) { // Get the index of v in heap array int i = minHeap->pos[v]; // Get the node and update its dist value minHeap->array[i]->dist = dist; // Travel up while the complete // tree is not heapified. // This is a O(Logn) loop while (i && minHeap->array[i]->dist < minHeap->array[(i - 1) / 2]->dist) { // Swap this node with its parent minHeap->pos[minHeap->array[i]->v] = (i-1)/2; minHeap->pos[minHeap->array[ (i-1)/2]->v] = i; swapMinHeapNode(&minHeap->array[i], &minHeap->array[(i - 1) / 2]); // move to parent index i = (i - 1) / 2; } } // A utility function to check if a given vertex // 'v' is in min heap or not bool isInMinHeap( struct MinHeap *minHeap, int v) { if (minHeap->pos[v] < minHeap->size) return true ; return false ; } // A utility function used to print the solution void printArr( int dist[], int n) { printf ( "Vertex Distance from Source\n" ); for ( int i = 0; i < n; ++i) printf ( "%d \t\t %d\n" , i, dist[i]); } // The main function that calculates // distances of shortest paths from src to all // vertices. It is a O(ELogV) function void dijkstra( struct Graph* graph, int src) { // Get the number of vertices in graph int V = graph->V; // dist values used to pick // minimum weight edge in cut int dist[V]; // minHeap represents set E struct MinHeap* minHeap = createMinHeap(V); // Initialize min heap with all // vertices. dist value of all vertices for ( int v = 0; v < V; ++v) { dist[v] = INT_MAX; minHeap->array[v] = newMinHeapNode(v, dist[v]); minHeap->pos[v] = v; } // Make dist value of src vertex // as 0 so that it is extracted first minHeap->array[src] = newMinHeapNode(src, dist[src]); minHeap->pos[src] = src; dist[src] = 0; decreaseKey(minHeap, src, dist[src]); // Initially size of min heap is equal to V minHeap->size = V; // In the following loop, // min heap contains all nodes // whose shortest distance // is not yet finalized. while (!isEmpty(minHeap)) { // Extract the vertex with // minimum distance value struct MinHeapNode* minHeapNode = extractMin(minHeap); // Store the extracted vertex number int u = minHeapNode->v; // Traverse through all adjacent // vertices of u (the extracted // vertex) and update // their distance values struct AdjListNode* pCrawl = graph->array[u].head; while (pCrawl != NULL) { int v = pCrawl->dest; // If shortest distance to v is // not finalized yet, and distance to v // through u is less than its // previously calculated distance if (isInMinHeap(minHeap, v) && dist[u] != INT_MAX && pCrawl->weight + dist[u] < dist[v]) { dist[v] = dist[u] + pCrawl->weight; // update distance // value in min heap also decreaseKey(minHeap, v, dist[v]); } pCrawl = pCrawl->next; } } // print the calculated shortest distances printArr(dist, V); } // Driver program to test above functions int main() { // create the graph given in above figure int V = 9; struct Graph* graph = createGraph(V); addEdge(graph, 0, 1, 4); addEdge(graph, 0, 7, 8); addEdge(graph, 1, 2, 8); addEdge(graph, 1, 7, 11); addEdge(graph, 2, 3, 7); addEdge(graph, 2, 8, 2); addEdge(graph, 2, 5, 4); addEdge(graph, 3, 4, 9); addEdge(graph, 3, 5, 14); addEdge(graph, 4, 5, 10); addEdge(graph, 5, 6, 2); addEdge(graph, 6, 7, 1); addEdge(graph, 6, 8, 6); addEdge(graph, 7, 8, 7); dijkstra(graph, 0); return 0; } |
Java
import java.io.*; import java.util.*; class GFG { static class AdjListNode { int vertex, weight; AdjListNode( int v, int w) { vertex = v; weight = w; } int getVertex() { return vertex; } int getWeight() { return weight; } } // Function to find the shortest distance of all the // vertices from the source vertex S. public static int [] dijkstra( int V, ArrayList<ArrayList<AdjListNode> > graph, int src) { int [] distance = new int [V]; for ( int i = 0 ; i < V; i++) distance[i] = Integer.MAX_VALUE; distance[src] = 0 ; PriorityQueue<AdjListNode> pq = new PriorityQueue<>( (v1, v2) -> v1.getWeight() - v2.getWeight()); pq.add( new AdjListNode(src, 0 )); while (pq.size() > 0 ) { AdjListNode current = pq.poll(); for (AdjListNode n : graph.get(current.getVertex())) { if (distance[current.getVertex()] + n.getWeight() < distance[n.getVertex()]) { distance[n.getVertex()] = n.getWeight() + distance[current.getVertex()]; pq.add( new AdjListNode( n.getVertex(), distance[n.getVertex()])); } } } // If you want to calculate distance from source to // a particular target, you can return // distance[target] return distance; } public static void main(String[] args) { int V = 9 ; ArrayList<ArrayList<AdjListNode> > graph = new ArrayList<>(); for ( int i = 0 ; i < V; i++) { graph.add( new ArrayList<>()); } int source = 0 ; graph.get( 0 ).add( new AdjListNode( 1 , 4 )); graph.get( 0 ).add( new AdjListNode( 7 , 8 )); graph.get( 1 ).add( new AdjListNode( 2 , 8 )); graph.get( 1 ).add( new AdjListNode( 7 , 11 )); graph.get( 1 ).add( new AdjListNode( 0 , 7 )); graph.get( 2 ).add( new AdjListNode( 1 , 8 )); graph.get( 2 ).add( new AdjListNode( 3 , 7 )); graph.get( 2 ).add( new AdjListNode( 8 , 2 )); graph.get( 2 ).add( new AdjListNode( 5 , 4 )); graph.get( 3 ).add( new AdjListNode( 2 , 7 )); graph.get( 3 ).add( new AdjListNode( 4 , 9 )); graph.get( 3 ).add( new AdjListNode( 5 , 14 )); graph.get( 4 ).add( new AdjListNode( 3 , 9 )); graph.get( 4 ).add( new AdjListNode( 5 , 10 )); graph.get( 5 ).add( new AdjListNode( 4 , 10 )); graph.get( 5 ).add( new AdjListNode( 6 , 2 )); graph.get( 6 ).add( new AdjListNode( 5 , 2 )); graph.get( 6 ).add( new AdjListNode( 7 , 1 )); graph.get( 6 ).add( new AdjListNode( 8 , 6 )); graph.get( 7 ).add( new AdjListNode( 0 , 8 )); graph.get( 7 ).add( new AdjListNode( 1 , 11 )); graph.get( 7 ).add( new AdjListNode( 6 , 1 )); graph.get( 7 ).add( new AdjListNode( 8 , 7 )); graph.get( 8 ).add( new AdjListNode( 2 , 2 )); graph.get( 8 ).add( new AdjListNode( 6 , 6 )); graph.get( 8 ).add( new AdjListNode( 7 , 1 )); int [] distance = dijkstra(V, graph, source); // Printing the Output System.out.println( "Vertex " + " Distance from Source" ); for ( int i = 0 ; i < V; i++) { System.out.println(i + " " + distance[i]); } } } |
Python3
# A Python program for Dijkstra's shortest # path algorithm for adjacency # list representation of graph from collections import defaultdict import sys class Heap(): def __init__( self ): self .array = [] self .size = 0 self .pos = [] def newMinHeapNode( self , v, dist): minHeapNode = [v, dist] return minHeapNode # A utility function to swap two nodes # of min heap. Needed for min heapify def swapMinHeapNode( self , a, b): t = self .array[a] self .array[a] = self .array[b] self .array[b] = t # A standard function to heapify at given idx # This function also updates position of nodes # when they are swapped.Position is needed # for decreaseKey() def minHeapify( self , idx): smallest = idx left = 2 * idx + 1 right = 2 * idx + 2 if (left < self .size and self .array[left][ 1 ] < self .array[smallest][ 1 ]): smallest = left if (right < self .size and self .array[right][ 1 ] < self .array[smallest][ 1 ]): smallest = right # The nodes to be swapped in min # heap if idx is not smallest if smallest ! = idx: # Swap positions self .pos[ self .array[smallest][ 0 ]] = idx self .pos[ self .array[idx][ 0 ]] = smallest # Swap nodes self .swapMinHeapNode(smallest, idx) self .minHeapify(smallest) # Standard function to extract minimum # node from heap def extractMin( self ): # Return NULL wif heap is empty if self .isEmpty() = = True : return # Store the root node root = self .array[ 0 ] # Replace root node with last node lastNode = self .array[ self .size - 1 ] self .array[ 0 ] = lastNode # Update position of last node self .pos[lastNode[ 0 ]] = 0 self .pos[root[ 0 ]] = self .size - 1 # Reduce heap size and heapify root self .size - = 1 self .minHeapify( 0 ) return root def isEmpty( self ): return True if self .size = = 0 else False def decreaseKey( self , v, dist): # Get the index of v in heap array i = self .pos[v] # Get the node and update its dist value self .array[i][ 1 ] = dist # Travel up while the complete tree is # not heapified. This is a O(Logn) loop while (i > 0 and self .array[i][ 1 ] < self .array[(i - 1 ) / / 2 ][ 1 ]): # Swap this node with its parent self .pos[ self .array[i][ 0 ] ] = (i - 1 ) / / 2 self .pos[ self .array[(i - 1 ) / / 2 ][ 0 ] ] = i self .swapMinHeapNode(i, (i - 1 ) / / 2 ) # move to parent index i = (i - 1 ) / / 2 ; # A utility function to check if a given # vertex 'v' is in min heap or not def isInMinHeap( self , v): if self .pos[v] < self .size: return True return False def printArr(dist, n): print ( "Vertex\tDistance from source" ) for i in range (n): print ( "%d\t\t%d" % (i,dist[i])) class Graph(): def __init__( self , V): self .V = V self .graph = defaultdict( list ) # Adds an edge to an undirected graph def addEdge( self , src, dest, weight): # Add an edge from src to dest. A new node # is added to the adjacency list of src. The # node is added at the beginning. The first # element of the node has the destination # and the second elements has the weight newNode = [dest, weight] self .graph[src].insert( 0 , newNode) # Since graph is undirected, add an edge # from dest to src also newNode = [src, weight] self .graph[dest].insert( 0 , newNode) # The main function that calculates distances # of shortest paths from src to all vertices. # It is a O(ELogV) function def dijkstra( self , src): V = self .V # Get the number of vertices in graph dist = [] # dist values used to pick minimum # weight edge in cut # minHeap represents set E minHeap = Heap() # Initialize min heap with all vertices. # dist value of all vertices for v in range (V): dist.append( 1e7 ) minHeap.array.append( minHeap. newMinHeapNode(v, dist[v])) minHeap.pos.append(v) # Make dist value of src vertex as 0 so # that it is extracted first minHeap.pos[src] = src dist[src] = 0 minHeap.decreaseKey(src, dist[src]) # Initially size of min heap is equal to V minHeap.size = V; # In the following loop, # min heap contains all nodes # whose shortest distance is not yet finalized. while minHeap.isEmpty() = = False : # Extract the vertex # with minimum distance value newHeapNode = minHeap.extractMin() u = newHeapNode[ 0 ] # Traverse through all adjacent vertices of # u (the extracted vertex) and update their # distance values for pCrawl in self .graph[u]: v = pCrawl[ 0 ] # If shortest distance to v is not finalized # yet, and distance to v through u is less # than its previously calculated distance if (minHeap.isInMinHeap(v) and dist[u] ! = 1e7 and \ pCrawl[ 1 ] + dist[u] < dist[v]): dist[v] = pCrawl[ 1 ] + dist[u] # update distance value # in min heap also minHeap.decreaseKey(v, dist[v]) printArr(dist,V) # Driver program to test the above functions graph = Graph( 9 ) graph.addEdge( 0 , 1 , 4 ) graph.addEdge( 0 , 7 , 8 ) graph.addEdge( 1 , 2 , 8 ) graph.addEdge( 1 , 7 , 11 ) graph.addEdge( 2 , 3 , 7 ) graph.addEdge( 2 , 8 , 2 ) graph.addEdge( 2 , 5 , 4 ) graph.addEdge( 3 , 4 , 9 ) graph.addEdge( 3 , 5 , 14 ) graph.addEdge( 4 , 5 , 10 ) graph.addEdge( 5 , 6 , 2 ) graph.addEdge( 6 , 7 , 1 ) graph.addEdge( 6 , 8 , 6 ) graph.addEdge( 7 , 8 , 7 ) graph.dijkstra( 0 ) # This code is contributed by Divyanshu Mehta |
C#
// C# program for Dijkstra's // shortest path algorithm for adjacency // list representation of graph using System; using System.Collections.Generic; using System.Linq; public class AdjListNode : IComparable<AdjListNode> { private int vertex, weight; public AdjListNode( int v, int w) { vertex = v; weight = w; } public int getVertex() { return vertex; } public int getWeight() { return weight; } public int CompareTo(AdjListNode other) { return weight - other.weight; } } class GFG { // Function to find the shortest distance of all the // vertices from the source vertex S. public static int [] dijkstra( int V, List<List<AdjListNode> > graph, int src) { int [] distance = new int [V]; for ( int i = 0; i < V; i++) distance[i] = Int32.MaxValue; distance[src] = 0; SortedSet<AdjListNode> pq = new SortedSet<AdjListNode>(); pq.Add( new AdjListNode(src, 0)); while (pq.Count > 0) { AdjListNode current = pq.First(); pq.Remove(current); foreach ( AdjListNode n in graph[current.getVertex()]) { if (distance[current.getVertex()] + n.getWeight() < distance[n.getVertex()]) { distance[n.getVertex()] = n.getWeight() + distance[current.getVertex()]; pq.Add( new AdjListNode( n.getVertex(), distance[n.getVertex()])); } } } // If you want to calculate distance from source to // a particular target, you can return // distance[target] return distance; } static void Main( string [] args) { int V = 9; List<List<AdjListNode> > graph = new List<List<AdjListNode> >(); for ( int i = 0; i < V; i++) { graph.Add( new List<AdjListNode>()); } int source = 0; graph[0].Add( new AdjListNode(1, 4)); graph[0].Add( new AdjListNode(7, 8)); graph[1].Add( new AdjListNode(2, 8)); graph[1].Add( new AdjListNode(7, 11)); graph[1].Add( new AdjListNode(0, 7)); graph[2].Add( new AdjListNode(1, 8)); graph[2].Add( new AdjListNode(3, 7)); graph[2].Add( new AdjListNode(8, 2)); graph[2].Add( new AdjListNode(5, 4)); graph[3].Add( new AdjListNode(2, 7)); graph[3].Add( new AdjListNode(4, 9)); graph[3].Add( new AdjListNode(5, 14)); graph[4].Add( new AdjListNode(3, 9)); graph[4].Add( new AdjListNode(5, 10)); graph[5].Add( new AdjListNode(4, 10)); graph[5].Add( new AdjListNode(6, 2)); graph[6].Add( new AdjListNode(5, 2)); graph[6].Add( new AdjListNode(7, 1)); graph[6].Add( new AdjListNode(8, 6)); graph[7].Add( new AdjListNode(0, 8)); graph[7].Add( new AdjListNode(1, 11)); graph[7].Add( new AdjListNode(6, 1)); graph[7].Add( new AdjListNode(8, 7)); graph[8].Add( new AdjListNode(2, 2)); graph[8].Add( new AdjListNode(6, 6)); graph[8].Add( new AdjListNode(7, 1)); int [] distance = dijkstra(V, graph, source); // Printing the Output Console.WriteLine( "Vertex " + " Distance from Source" ); for ( int i = 0; i < V; i++) { Console.WriteLine( "{0} {1}" , i, distance[i]); } } } // This code is contributed by cavi4762. |
Javascript
// javascript program for Dijkstra's // shortest path algorithm for adjacency // list representation of graph // A structure to represent a // node in adjacency list class AdjListNode { constructor(dest, weight) { this .dest = dest; this .weight = weight; } } // Function to find the shortest distance of all the // vertices from the source vertex S. function dijkstra(V, graph, source) { let distance = []; let visited = []; for (let i = 0; i < V; i++) { distance.push(Infinity); visited.push( false ); } distance = 0; for (let i = 0; i < V - 1; i++) { let u = getMinDistanceVertex(distance, visited); visited[u] = true ; for (let j = 0; j < graph[u].length; j++) { let v = graph[u][j].dest; let weight = graph[u][j].weight; if (!visited[v] && distance[u] !== Infinity && distance[u] + weight < distance[v]) { distance[v] = distance[u] + weight; } } } // If you want to calculate distance from source to // a particular target, you can return // distance[target] return distance; } function getMinDistanceVertex(distance, visited) { let minDistance = Infinity; let minIndex = -1; for (let i = 0; i < distance.length; i++) { if (!visited[i] && distance[i] <= minDistance) { minDistance = distance[i]; minIndex = i; } } return minIndex; } // create the graph given in above figure const V = 9; let graph = []; for (let i = 0; i < V; i++) { graph.push([]); } let source = 0; graph[0].push( new AdjListNode(1, 4)); graph[0].push( new AdjListNode(7, 8)); graph[1].push( new AdjListNode(2, 8)); graph[1].push( new AdjListNode(7, 11)); graph[1].push( new AdjListNode(0, 7)); graph[2].push( new AdjListNode(1, 8)); graph[2].push( new AdjListNode(3, 7)); graph[2].push( new AdjListNode(8, 2)); graph[2].push( new AdjListNode(5, 4)); graph[3].push( new AdjListNode(2, 7)); graph[3].push( new AdjListNode(4, 9)); graph[3].push( new AdjListNode(5, 14)); graph[4].push( new AdjListNode(3, 9)); graph[4].push( new AdjListNode(5, 10)); graph[5].push( new AdjListNode(4, 10)); graph[5].push( new AdjListNode(6, 2)); graph[6].push( new AdjListNode(5, 2)); graph[6].push( new AdjListNode(7, 1)); graph[6].push( new AdjListNode(8, 6)); graph[7].push( new AdjListNode(0, 8)); graph[7].push( new AdjListNode(1, 11)); graph[7].push( new AdjListNode(6, 1)); graph[7].push( new AdjListNode(8, 7)); graph[8].push( new AdjListNode(2, 2)); graph[8].push( new AdjListNode(6, 6)); graph[8].push( new AdjListNode(7, 1)); let distance = dijkstra(V, graph, source); // Printing the Output console.log( "Vertex Distance from Source" ); for (let i = 0; i < V; i++) { console.log(i + " \t\t " + distance[i]); } // This code is contributed by shivhack999 |
Vertex Distance from Source 0 0 1 4 2 12 3 19 4 21 5 11 6 9 7 8 8 14
Time Complexity: The time complexity of the above code/algorithm looks O(V^2) as there are two nested while loops. If we take a closer look, we can observe that the statements in the inner loop are executed O(V+E) times (similar to BFS). The inner loop has decreaseKey() operation which takes O(LogV) time. So overall time complexity is O(E+V)*O(LogV) which is O((E+V)*LogV) = O(ELogV)
Note that the above code uses Binary Heap for Priority Queue implementation. Time complexity can be reduced to O(E + VLogV) using Fibonacci Heap. The reason is, that Fibonacci Heap takes O(1) time for decrease-key operation while Binary Heap takes O(Logn) time.
Space Complexity: O(V)
The space complexity of Dijkstra’s algorithm is O(V) as we maintain two priority queues or heaps (in case of binary heap). The heap stores the nodes which are not yet included in SPT (shortest path tree). We also maintain an array to store the distance values of each node.
Notes:
- The code calculates the shortest distance but doesn’t calculate the path information. We can create a parent array, update the parent array when distance is updated (like prim’s implementation), and use it to show the shortest path from source to different vertices.
- The code is for undirected graphs, same Dijkstra function can be used for directed graphs also.
- The code finds the shortest distances from the source to all vertices. If we are interested only in the shortest distance from the source to a single target, we can break the for loop when the picked minimum distance vertex is equal to the target (Step 3.a of an algorithm).
- Dijkstra’s algorithm doesn’t work for graphs with negative weight edges. For graphs with negative weight edges, Bellman–Ford algorithm can be used, we will soon be discussing it as a separate post.
Printing Paths in Dijkstra’s Shortest Path Algorithm
Dijkstra’s shortest path algorithm using set in STL
References:
Introduction to Algorithms by Clifford Stein, Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Algorithms by Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani
Please write comments if you find anything incorrect, or if you want to share more information about the topic discussed above.
Please Login to comment...