Skip to content
Related Articles

Related Articles

Improve Article

Check whether count of odd and even factors of a number are equal

  • Difficulty Level : Medium
  • Last Updated : 12 May, 2021

Given a number N, the task is to find whether N has an equal number of odd and even factors.
Examples: 
 

Input: N = 10 
Output: YES 
Explanation: 10 has two odd factors (1 and 5) and two even factors (2 and 10)
Input: N = 24 
Output: NO 
Explanation: 24 has two odd factors (1 and 3) and six even factors (2, 4, 6, 8 12 and 24)
Input: N = 125 
Output: NO 
 

Naive Approach: Find all the divisors and check whether the count of odd divisors is the same as the count of even divisors.
Below is the implementation of the above approach 
 

C++




// C++ solution for the above approach
#include <bits/stdc++.h>
using namespace std;
#define lli long long int
 
// Function to check condition
void isEqualFactors(lli N)
{
    // Initialize even_count
    // and od_count
    lli ev_count = 0, od_count = 0;
 
    // loop runs till square root
    for (lli i = 1;
         i <= sqrt(N) + 1; i++) {
 
        if (N % i == 0) {
            if (i == N / i) {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
 
            else {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
 
                if ((N / i) % 2 == 0)
                    ev_count += 1;
 
                else
                    od_count += 1;
            }
        }
    }
 
    if (ev_count == od_count)
        cout << "YES" << endl;
    else
        cout << "NO" << endl;
}
 
// Driver Code
int main()
{
    lli N = 10;
    isEqualFactors(N);
 
    return 0;
}

Java




// Java solution for the above approach
class GFG{
 
// Function to check condition
static void isEqualFactors(int N)
{
     
    // Initialize even_count
    // and od_count
    int ev_count = 0, od_count = 0;
 
    // Loop runs till square root
    for(int i = 1;
            i <= Math.sqrt(N) + 1; i++)
    {
       if (N % i == 0)
       {
           if (i == N / i)
           {
               if (i % 2 == 0)
                   ev_count += 1;
               else
                   od_count += 1;
           }
           else
           {
               if (i % 2 == 0)
                   ev_count += 1;
               else
                   od_count += 1;
                    
               if ((N / i) % 2 == 0)
                   ev_count += 1;
               else
                   od_count += 1;
           }
       }
    }
     
    if (ev_count == od_count)
        System.out.print("YES" + "\n");
    else
        System.out.print("NO" + "\n");
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 10;
     
    isEqualFactors(N);
}
}
 
// This code is contributed by amal kumar choubey

Python3




# Python3 code for the naive approach
import math
 
# Function to check condition
def isEqualFactors(N):
 
# Initialize even_count
# and od_count
    ev_count = 0
    od_count = 0
 
# loop runs till square root
    for i in range(1, (int)(math.sqrt(N)) + 2) :
        if (N % i == 0):
            if(i == N // i):
                if(i % 2 == 0):
                    ev_count += 1
                else:
                    od_count += 1
             
            else:
                if(i % 2 == 0):
                    ev_count += 1
                else:
                    od_count += 1
                     
                if((N // i) % 2 == 0):
                    ev_count += 1;
                else:
                    od_count += 1;
     
    if (ev_count == od_count):
        print("YES")
    else:
        print("NO")
 
# Driver Code
N = 10
isEqualFactors(N)

C#




// C# solution for the above approach
using System;
 
class GFG{
 
// Function to check condition
static void isEqualFactors(int N)
{
     
    // Initialize even_count
    // and od_count
    int ev_count = 0, od_count = 0;
 
    // Loop runs till square root
    for(int i = 1;
            i <= Math.Sqrt(N) + 1; i++)
    {
        if (N % i == 0)
        {
            if (i == N / i)
            {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
            else
            {
                if (i % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
                         
                if ((N / i) % 2 == 0)
                    ev_count += 1;
                else
                    od_count += 1;
            }
        }
    }
     
    if (ev_count == od_count)
        Console.Write("YES" + "\n");
    else
        Console.Write("NO" + "\n");
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 10;
     
    isEqualFactors(N);
}
}
 
// This code is contributed by gauravrajput1

Javascript




<script>
// Javascript program for the above approach
 
// Function to check condition
function isEqualFactors(N)
{
     
    // Initialize even_count
    // and od_count
    let ev_count = 0, od_count = 0;
 
    // Loop runs till square root
    for(let i = 1;
            i <= Math.sqrt(N) + 1; i++)
    {
       if (N % i == 0)
       {
           if (i == N / i)
           {
               if (i % 2 == 0)
                   ev_count += 1;
               else
                   od_count += 1;
           }
           else
           {
               if (i % 2 == 0)
                   ev_count += 1;
               else
                   od_count += 1;
                    
               if ((N / i) % 2 == 0)
                   ev_count += 1;
               else
                   od_count += 1;
           }
       }
    }
     
    if (ev_count == od_count)
        document.write("YES" + "\n");
    else
        document.write("NO" + "\n");
}
 
    // Driver Code
     
    let N = 10;
     
    isEqualFactors(N);
 
</script>
Output: 
YES

 

Time Complexity: O(sqrt(N)) 
Auxiliary Space: O(1)
Efficient Solution: 
The following observation must be made to optimize the above approach: 
 



  • According to Unique Factorisation Theorem, any number can be expressed in terms of the product of the power of primes. So, N can be expressed as : 
     

 
 

N = P1A1 * P2A2 * P3A3 * …….. * PkAK where, each Pi is a prime and each Ai is a positive integer.(1 <= i <= K) 
 

 

  • Using the law of combinators any divisor of N would be of the form : 
     

N = P1B1 * P2B2 * P3B3 * …….. * PKBK where Bi is an integer and 0 <= Bi <= Ai for 1 <= i <= K. 
 

  • A divisor would be odd if it doesn’t contain 2 in its prime factorization. So, if P1 = 2 then B1 must be 0. It can be done in only 1 way.
  • For even divisors, B1 can be replaced by 1 (or) 2 (or)….A1 to get a divisor. It can be done in B1 ways.
  • Now for others each Bi can be replaced either with 0 (or) 1 (or) 2….(or) Ai for 1 <= i <= K. It can be done in (Ai+1) ways.
  • By Fundamental principle : 
    • Number of odd divisors are: X = 1 * (A2+1) * (A3+1) * ….. * (AK+1).
    • Similarly, Number of even divisors are: Y = A1 * (A2+1) * (A3+1) * …. * (AK+1).
  • For no. of even divisors to be equal to no. of odd divisors X, Y should be equal. This is possible only when A1 = 1.

So, it can be concluded that a number of even and odd divisors of a number are equal if it has 1 (and only 1) power of 2 in its prime factorisation.
Follow the steps below to solve the problem: 
 

  1. For a given number N, check if it is divisible by 2.
  2. If the number is divisible by 2, then check if it is divisible by 22. If yes, then the number won’t have an equal number of odd and even factors. If not, then the number will have an equal number of odd and even factors.
  3. If the number is not divisible by 2, then the number will never have any even factor and thus it won’t have an equal number of odd and even factors.

Below is the implementation of the above approach. 
 

C




// C code for the above approach
#include <stdio.h>
#define lli long long int
 
// Function to check condition
void isEqualFactors(lli N)
{
    if ((N % 2 == 0)
        && (N % 4 != 0))
        printf("YES\n");
    else
        printf("NO\n");
}
 
// Driver Code
int main()
{
    lli N = 10;
    isEqualFactors(N);
 
    N = 125;
    isEqualFactors(N);
 
    return 0;
}

C++




// C++ code for the above approach
#include <bits/stdc++.h>
using namespace std;
#define lli long long int
 
// Function to check condition
void isEqualFactors(lli N)
{
    if ((N % 2 == 0)
        and (N % 4 != 0))
        cout << "YES" << endl;
    else
        cout << "NO" << endl;
}
 
// Driver Code
int main()
{
    lli N = 10;
    isEqualFactors(N);
 
    N = 125;
    isEqualFactors(N);
 
    return 0;
}

Java




// JAVA code for the above approach
public class GFG {
 
    // Function to check condition
    static void isEqualFactors(int N)
    {
        if ((N % 2 == 0)
            && (N % 4 != 0))
            System.out.println("YES");
 
        else
            System.out.println("NO");
    }
 
    // Driver code
    public static void main(String args[])
    {
        int N = 10;
        isEqualFactors(N);
 
        N = 125;
        isEqualFactors(N);
    }
}

Python




# Python code for the above approach
  
# Function to check condition
def isEqualFactors(N):
    if ( ( N % 2 == 0 ) and ( N % 4 != 0) ):
        print("YES")
    else:
        print("NO")
 
# Driver Code
N = 10
isEqualFactors(N)
 
N = 125;
isEqualFactors(N)

C#




// C# code for the above approach
using System;
 
class GFG {
 
    // Function to check condition
    static void isEqualFactors(int N)
    {
        if ((N % 2 == 0)
            && (N % 4 != 0))
            Console.WriteLine("YES");
 
        else
            Console.WriteLine("NO");
    }
 
    // Driver code
    public static void Main()
    {
        int N = 10;
        isEqualFactors(N);
 
        N = 125;
        isEqualFactors(N);
    }
}

Javascript




<script>
 
// Javascript code for the above approach
 
// Function to check condition
function isEqualFactors(N)
{
    if ((N % 2 == 0)
        && (N % 4 != 0))
        document.write("YES<br>");
    else
        document.write("NO<br>");
}
 
// Driver Code
var N = 10;
isEqualFactors(N);
N = 125;
isEqualFactors(N);
 
</script>
Output: 
YES
NO

 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Join the First-Step-to-DSA Course for Class 9 to 12 students , specifically designed to introduce data structures and algorithms to the class 9 to 12 students




My Personal Notes arrow_drop_up
Recommended Articles
Page :