Skip to content
Related Articles

Related Articles

Improve Article

Check if GCD of all Composite Numbers in an array divisible by K is a Fibonacci Number or not

  • Last Updated : 27 Apr, 2021

Given array arr[] consisting of N non-negative integers, and an integer K, the task is to check if GCD of all composite numbers in the array which are divisible by K is a Fibonacci Number or not. IF found to be true, print “Yes”. Otherwise, print “No”.

Examples:

Input: arr[] = {13, 55, 1331, 7, 13, 11, 44, 77, 144, 89}, K = 11
Output: No
Explanation: Composite Numbers from the array which are divisible by 11 are {55, 1331, 11, 44, 77}. GCD of these elements is equal to 11, which is not a Fibonacci Number.

Input: arr[] = {34, 2, 4, 8, 5, 7, 11}, K = 2
Output:Yes
Explanation: Composite Numbers from the array which are divisible by 2 are {34, 2, 4, 8}. GCD of these elements is equal to 2, which is not a Fibonacci Number.

Approach: Follow the steps below to solve the problem:



  1. Create a function isComposite() to check if a number is a composite number or not.
  2. Create another function isFibonacci() to check if a number is Fibonacci number or not.
  3. Initialize a vector of integers, say compositeset, and another integer variable gcd to store gcd of the composite numbers from the array which are divisible by K.
  4. Traverse the array arr[].
  5. For every element arr[i], check if it is composite and divisible by K or not. If found to be true, insert it into the vector compositeset
  6. Calculate GCD of all the elements in the vector compositeset and store it in the variable gcd.
  7. Check if gcd is a Fibonacci Number or not.
  8. If found to be true, then print “Yes”. Otherwise, print “No”.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a
// number is composite or not
bool isComposite(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return false;
 
    // Check if the number is
    // divisible by 2 or 3 or not
    if (n % 2 == 0 || n % 3 == 0)
 
        return true;
 
    // Check if n is a multiple of
    // any other prime number
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
 
            return true;
 
    return false;
}
 
// Function to check if a number
// is a Perfect Square or not
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s * s == x);
}
 
// Function to check if a number
// is a Fibonacci number or not
bool isFibonacci(int n)
{
    // If 5*n^2 + 4 or 5*n^2 - 4 or
    // both are perfect square
    return isPerfectSquare(5 * n * n + 4)
           || isPerfectSquare(5 * n * n - 4);
}
 
// Function to check if GCD of composite
// numbers from the array a[] which are
// divisible by k is a Fibonacci number or not
void ifgcdFibonacci(int a[], int n, int k)
{
    vector<int> compositeset;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // If array element is composite
        // and divisible by k
        if (isComposite(a[i]) && a[i] % k == 0) {
            compositeset.push_back(a[i]);
        }
    }
    int gcd = compositeset[0];
 
    // Calculate GCD of all elements in compositeset
    for (int i = 1; i < compositeset.size(); i++) {
        gcd = __gcd(gcd, compositeset[i]);
        if (gcd == 1) {
            break;
        }
    }
 
    // If GCD is Fibonacci
    if (isFibonacci(gcd)) {
        cout << "Yes";
        return;
    }
    cout << "No";
    return;
}
 
// Driver Code
int main()
{
 
    int arr[] = { 34, 2, 4, 8, 5, 7, 11 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
 
    ifgcdFibonacci(arr, n, k);
    return 0;
}

Java




// Java Program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check if a
// number is composite or not
static boolean isComposite(int n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return false;
 
    // Check if the number is
    // divisible by 2 or 3 or not
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    // Check if n is a multiple of
    // any other prime number
    for(int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
 
    return false;
}
 
// Function to check if a number
// is a Perfect Square or not
static boolean isPerfectSquare(int x)
{
    int s = (int)Math.sqrt(x);
    return (s * s == x);
}
 
// Function to check if a number
// is a Fibonacci number or not
static boolean isFibonacci(int n)
{
     
    // If 5*n^2 + 4 or 5*n^2 - 4 or
    // both are perfect square
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// Function to check if GCD of composite
// numbers from the array a[] which are
// divisible by k is a Fibonacci number or not
static void ifgcdFibonacci(int a[], int n, int k)
{
    Vector<Integer> compositeset = new Vector<>();
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // If array element is composite
        // and divisible by k
        if (isComposite(a[i]) && a[i] % k == 0)
        {
            compositeset.add(a[i]);
        }
    }
    int gcd = compositeset.get(0);
 
    // Calculate GCD of all elements in compositeset
    for(int i = 1; i < compositeset.size(); i++)
    {
        gcd = __gcd(gcd, compositeset.get(i));
         
        if (gcd == 1)
        {
            break;
        }
    }
 
    // If GCD is Fibonacci
    if (isFibonacci(gcd))
    {
        System.out.print("Yes");
        return;
    }
    System.out.print("No");
    return;
}
 
// Recursive function to return gcd of a and b 
static int __gcd(int a, int b) 
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 34, 2, 4, 8, 5, 7, 11 };
    int n = arr.length;
    int k = 2;
 
    ifgcdFibonacci(arr, n, k);
}
}
 
// This code is contributed by Amit Katiyar

Python3




# Python3 program for the above approach
import math
 
# Function to check if a
# number is composite or not
def isComposite(n):
     
    # Corner cases
    if n <= 1:
        return False
 
    if n <= 3:
        return False
 
    # Check if the number is
    # divisible by 2 or 3 or not
    if n % 2 == 0 or n % 3 == 0:
        return True
 
    # Check if n is a multiple of
    # any other prime number
    i = 5
    while i * i <= n:
        if ((n % i == 0 ) or
            (n % (i + 2) == 0)):
            return True
             
        i += 6   
 
    return False
 
# Function to check if a number
# is a Perfect Square or not
def isPerfectSquare(x):
     
    s = int(math.sqrt(x))
    return (s * s == x)
     
# Function to check if a number
# is a Fibonacci number or not
def isFibonacci(n):
     
    # If 5*n^2 + 4 or 5*n^2 - 4 or
    # both are perfect square
    return (isPerfectSquare(5 * n * n + 4) or
            isPerfectSquare(5 * n * n - 4))
 
# Function to check if GCD of composite
# numbers from the array a[] which are
# divisible by k is a Fibonacci number or not
def ifgcdFibonacci(a,  n,  k):
 
    compositeset = []
 
    # Traverse the array
    for i in range(n):
 
        # If array element is composite
        # and divisible by k
        if (isComposite(a[i]) and a[i] % k == 0):
            compositeset.append(a[i])
     
    gcd = compositeset[0]
 
    # Calculate GCD of all elements in compositeset
    for i in range(1, len(compositeset), 1):
        gcd = math.gcd(gcd, compositeset[i])
         
        if gcd == 1:
            break
     
    # If GCD is Fibonacci
    if (isFibonacci(gcd)):
        print("Yes")
        return
     
    print("No")
    return
 
# Driver Code
if __name__ == "__main__" :
     
    arr = [ 34, 2, 4, 8, 5, 7, 11 ]
    n = len(arr)
    k = 2
     
    ifgcdFibonacci(arr, n, k)
     
# This code is contributed by jana_sayantan

C#




// C# Program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to check if a
// number is composite or not
static bool isComposite(int n)
{
     
    // Corner cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return false;
 
    // Check if the number is
    // divisible by 2 or 3 or not
    if (n % 2 == 0 || n % 3 == 0)
        return true;
 
    // Check if n is a multiple of
    // any other prime number
    for(int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
 
    return false;
}
 
// Function to check if a number
// is a Perfect Square or not
static bool isPerfectSquare(int x)
{
    int s = (int)Math.Sqrt(x);
    return (s * s == x);
}
 
// Function to check if a number
// is a Fibonacci number or not
static bool isFibonacci(int n)
{
     
    // If 5*n^2 + 4 or 5*n^2 - 4 or
    // both are perfect square
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// Function to check if GCD of composite
// numbers from the array []a which are
// divisible by k is a Fibonacci number or not
static void ifgcdFibonacci(int []a, int n, int k)
{
    List<int> compositeset = new List<int>();
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // If array element is composite
        // and divisible by k
        if (isComposite(a[i]) && a[i] % k == 0)
        {
            compositeset.Add(a[i]);
        }
    }
    int gcd = compositeset[0];
 
    // Calculate GCD of all elements in compositeset
    for(int i = 1; i < compositeset.Count; i++)
    {
        gcd = __gcd(gcd, compositeset[i]);
         
        if (gcd == 1)
        {
            break;
        }
    }
 
    // If GCD is Fibonacci
    if (isFibonacci(gcd))
    {
        Console.Write("Yes");
        return;
    }
    Console.Write("No");
    return;
}
 
// Recursive function to return gcd of a and b 
static int __gcd(int a, int b) 
    return b == 0 ? a : __gcd(b, a % b);    
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 34, 2, 4, 8, 5, 7, 11 };
    int n = arr.Length;
    int k = 2;
 
    ifgcdFibonacci(arr, n, k);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript Program for the above approach
 
function __gcd(a, b) {
  if (!b) {
    return a;
  }
 
  return __gcd(b, a % b);
}
 
// Function to check if a
// number is composite or not
function isComposite(n)
{
    // Corner cases
    if (n <= 1)
        return false;
 
    if (n <= 3)
        return false;
 
    // Check if the number is
    // divisible by 2 or 3 or not
    if (n % 2 == 0 || n % 3 == 0)
        return true;
     
    var i;
    // Check if n is a multiple of
    // any other prime number
    for(i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return true;
 
    return false;
}
 
// Function to check if a number
// is a Perfect Square or not
function isPerfectSquare(x)
{
    var s = Math.sqrt(x);
    return (s * s == x);
}
 
// Function to check if a number
// is a Fibonacci number or not
function isFibonacci(n)
{
    // If 5*n^2 + 4 or 5*n^2 - 4 or
    // both are perfect square
    return isPerfectSquare(5 * n * n + 4)
           || isPerfectSquare(5 * n * n - 4);
}
 
// Function to check if GCD of composite
// numbers from the array a[] which are
// divisible by k is a Fibonacci number or not
function ifgcdFibonacci(a, n, k)
{
    var compositeset = [];
     
    var i;
    // Traverse the array
    for (i = 0; i < n; i++) {
 
        // If array element is composite
        // and divisible by k
        if (isComposite(a[i]) && a[i] % k == 0) {
            compositeset.push(a[i]);
        }
    }
    var gcd = compositeset[0];
 
    // Calculate GCD of all elements in compositeset
    for (i = 1; i < compositeset.length; i++) {
        gcd = __gcd(gcd, compositeset[i]);
        if (gcd == 1) {
            break;
        }
    }
 
    // If GCD is Fibonacci
    if (isFibonacci(gcd)) {
        document.write("Yes");
        return;
    }
    document.write("No");
    return;
}
 
// Driver Code
    var arr = [34, 2, 4, 8, 5, 7, 11];
    var n = arr.length;
    var k = 2;
 
    ifgcdFibonacci(arr, n, k);
 
</script>
Output: 
Yes

 

Time Complexity: O(N*log(N)), where N is the size of the array
Auxiliary Space: O(N)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :