Skip to content
Related Articles

Related Articles

Improve Article

How to check if a given number is Fibonacci number?

  • Difficulty Level : Medium
  • Last Updated : 15 Apr, 2021

Given a number ‘n’, how to check if n is a Fibonacci number. First few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, .. 
Examples : 
 

Input : 8
Output : Yes

Input : 34
Output : Yes

Input : 41
Output : No

 

A simple way is to generate Fibonacci numbers until the generated number is greater than or equal to ‘n’. Following is an interesting property about Fibonacci numbers that can also be used to check if a given number is Fibonacci or not. 
A number is Fibonacci if and only if one or both of (5*n2 + 4) or (5*n2 – 4) is a perfect square (Source: Wiki). Following is a simple program based on this concept. 
 

C++




// C++ program to check if x is a perfect square
#include <iostream>
#include <math.h>
using namespace std;
 
// A utility function that returns true if x is perfect square
bool isPerfectSquare(int x)
{
    int s = sqrt(x);
    return (s*s == x);
}
 
// Returns true if n is a Fibinacci Number, else false
bool isFibonacci(int n)
{
    // n is Fibinacci if one of 5*n*n + 4 or 5*n*n - 4 or both
    // is a perferct square
    return isPerfectSquare(5*n*n + 4) ||
           isPerfectSquare(5*n*n - 4);
}
 
// A utility function to test above functions
int main()
{
  for (int i = 1; i <= 10; i++)
     isFibonacci(i)? cout << i << " is a Fibonacci Number \n":
                     cout << i << " is a not Fibonacci Number \n" ;
  return 0;
}

Java




// Java program to check if x is a perfect square
 
class GFG
{
    // A utility method that returns true if x is perfect square
    static  boolean isPerfectSquare(int x)
    {
        int s = (int) Math.sqrt(x);
        return (s*s == x);
    }
      
    // Returns true if n is a Fibonacci Number, else false
    static boolean isFibonacci(int n)
    {
        // n is Fibonacci if one of 5*n*n + 4 or 5*n*n - 4 or both
        // is a perfect square
        return isPerfectSquare(5*n*n + 4) ||
               isPerfectSquare(5*n*n - 4);
    }
 
    // Driver method
    public static void main(String[] args)
    {
        for (int i = 1; i <= 10; i++)
             System.out.println(isFibonacci(i) ?  i +  " is a Fibonacci Number" :
                                                  i + " is a not Fibonacci Number");
    }
}
//This code is contributed by Nikita Tiwari

Python




# python program to check if x is a perfect square
import math
 
# A utility function that returns true if x is perfect square
def isPerfectSquare(x):
    s = int(math.sqrt(x))
    return s*s == x
 
# Returns true if n is a Fibinacci Number, else false
def isFibonacci(n):
 
    # n is Fibinacci if one of 5*n*n + 4 or 5*n*n - 4 or both
    # is a perferct square
    return isPerfectSquare(5*n*n + 4) or isPerfectSquare(5*n*n - 4)
    
# A utility function to test above functions
for i in range(1,11):
     if (isFibonacci(i) == True):
         print i,"is a Fibonacci Number"
     else:
         print i,"is a not Fibonacci Number "

C#




// C# program to check if
// x is a perfect square
using System;
 
class GFG {
 
    // A utility function that returns
    // true if x is perfect square
    static bool isPerfectSquare(int x)
    {
        int s = (int)Math.Sqrt(x);
        return (s * s == x);
    }
 
    // Returns true if n is a
    // Fibonacci Number, else false
    static bool isFibonacci(int n)
    {
        // n is Fibonacci if one of
        // 5*n*n + 4 or 5*n*n - 4 or
        // both are a perfect square
        return isPerfectSquare(5 * n * n + 4) ||
               isPerfectSquare(5 * n * n - 4);
    }
 
    // Driver method
    public static void Main()
    {
        for (int i = 1; i <= 10; i++)
            Console.WriteLine(isFibonacci(i) ? i +
                              " is a Fibonacci Number" : i +
                              " is a not Fibonacci Number");
    }
}
 
// This code is contributed by Sam007

PHP




<?php
// PHP program to check if
// x is a perfect square
 
// A utility function that
// returns true if x is
// perfect square
function isPerfectSquare($x)
{
    $s = (int)(sqrt($x));
    return ($s * $s == $x);
}
 
// Returns true if n is a
// Fibinacci Number, else false
function isFibonacci($n)
{
    // n is Fibinacci if one of
    // 5*n*n + 4 or 5*n*n - 4 or
    // both is a perferct square
    return isPerfectSquare(5 * $n * $n + 4) ||
           isPerfectSquare(5 * $n * $n - 4);
}
 
// Driver Code
for ($i = 1; $i <= 10; $i++)
if(isFibonacci($i))
echo "$i is a Fibonacci Number \n";
else
echo "$i is a not Fibonacci Number \n" ;
 
// This code is contributed by mits
?>

Javascript




<script>
// javascript program to check if x is a perfect square
 
// A utility function that returns true if x is perfect square
function isPerfectSquare( x)
{
    let s = parseInt(Math.sqrt(x));
    return (s * s == x);
}
 
// Returns true if n is a Fibinacci Number, else false
function isFibonacci( n)
{
 
    // n is Fibinacci if one of 5*n*n + 4 or 5*n*n - 4 or both
    // is a perferct square
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// A utility function to test above functions
  for (let i = 1; i <= 10; i++)
     isFibonacci(i)?  document.write( i + " is a Fibonacci Number <br/>"):
                     document.write(i + " is a not Fibonacci Number <br/>") ;
                      
// This code is contributed by Rajput-Ji
 
</script>

Output: 

1 is a Fibonacci Number
2 is a Fibonacci Number
3 is a Fibonacci Number
4 is a not Fibonacci Number
5 is a Fibonacci Number
6 is a not Fibonacci Number
7 is a not Fibonacci Number
8 is a Fibonacci Number
9 is a not Fibonacci Number
10 is a not Fibonacci Number

 



This article is contributed by Abhay Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :