Check if a number has prime count of divisors

Given an integer N, the task is to check if the count of divisors of N is prime or not.

Examples:

Input: N = 13
Output: Yes
The divisor count is 2 (1 and 13) which is prime.

Input: N = 8
Output: No
The divisors are 1, 2, 4 and 8.

Approach: Please read this article to find the count of divisors of a number. So find the maximum value of i for every prime divisor p such that N % (pi) = 0. So the count of divisors gets multiplied by (i + 1). The count of divisors will be (i1 + 1) * (i2 + 1) * … * (ik + 1).
It can now be seen that there can only be one prime divisor for the maximum i and if N % pi = 0 then (i + 1) should be prime. The primality can be checked in sqrt(n) time and the prime factors can also be found in sqrt(n) time. So the overall time complexity will be O(sqrt(n)).



Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true
// if n is prime
bool Prime(int n)
{
    // There is no prime
    // less than 2
    if (n < 2)
        return false;
  
    // Run a loop from 2 to sqrt(n)
    for (int i = 2; i <= sqrt(n); i++)
  
        // If there is any factor
        if (n % i == 0)
            return false;
  
    return true;
}
  
// Function that returns true if n
// has a prime count of divisors
bool primeCountDivisors(int n)
{
    if (n < 2)
        return false;
  
    // Find the prime factors
    for (int i = 2; i <= sqrt(n); i++)
        if (n % i == 0) {
  
            // Find the maximum value of i for every
            // prime divisor p such that n % (p^i) == 0
            long a = n, c = 0;
            while (a % i == 0) {
                a /= i;
                c++;
            }
  
            // If c+1 is a prime number and a = 1
            if (a == 1 && Prime(c + 1))
                return true;
  
            // The number cannot have two factors
            // to have count of divisors prime
            else
                return false;
        }
  
    // Else the number is prime so
    // it has only two divisors
    return true;
}
  
// Driver code
int main()
{
    int n = 13;
  
    if (primeCountDivisors(n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach 
class GFG
{
      
    // Function that returns true 
    // if n is prime 
    static boolean Prime(int n) 
    
        // There is no prime 
        // less than 2 
        if (n < 2
            return false
      
        // Run a loop from 2 to sqrt(n) 
        for (int i = 2; i <= (int)Math.sqrt(n); i++) 
      
            // If there is any factor 
            if (n % i == 0
                return false
        return true
    
      
    // Function that returns true if n 
    // has a prime count of divisors 
    static boolean primeCountDivisors(int n) 
    
        if (n < 2
            return false
      
        // Find the prime factors 
        for (int i = 2; i <= (int)Math.sqrt(n); i++) 
            if (n % i == 0
            
      
                // Find the maximum value of i for every 
                // prime divisor p such that n % (p^i) == 0 
                long a = n, c = 0
                while (a % i == 0)
                
                    a /= i; 
                    c++; 
                
      
                // If c+1 is a prime number and a = 1 
                if (a == 1 && Prime((int)c + 1) == true
                    return true
      
                // The number cannot have two factors 
                // to have count of divisors prime 
                else
                    return false
            
      
        // Else the number is prime so 
        // it has only two divisors 
        return true
    
      
    // Driver code 
    public static void main (String[] args)
    
        int n = 13
      
        if (primeCountDivisors(n)) 
            System.out.println("Yes"); 
        else
            System.out.println("No"); 
    
}
  
// This code is contributed by AnkitRai01

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
from math import sqrt
  
# Function that returns true 
# if n is prime 
def Prime(n) : 
  
    # There is no prime 
    # less than 2 
    if (n < 2) :
        return False
  
    # Run a loop from 2 to sqrt(n) 
    for i in range(2, int(sqrt(n)) + 1) :
  
        # If there is any factor 
        if (n % i == 0) :
            return False
  
    return True
  
# Function that returns true if n 
# has a prime count of divisors 
def primeCountDivisors(n) : 
  
    if (n < 2) :
        return False
  
    # Find the prime factors 
    for i in range(2, int(sqrt(n)) + 1) :
        if (n % i == 0) :
  
            # Find the maximum value of i for every 
            # prime divisor p such that n % (p^i) == 0 
            a = n; c = 0
            while (a % i == 0) :
                a //= i; 
                c += 1
  
            # If c + 1 is a prime number and a = 1 
            if (a == 1 and Prime(c + 1)) :
                return True
  
            # The number cannot have two factors 
            # to have count of divisors prime 
            else :
                return False
          
    # Else the number is prime so 
    # it has only two divisors 
    return True
  
# Driver code 
if __name__ == "__main__"
  
    n = 13
  
    if (primeCountDivisors(n)) :
        print("Yes"); 
    else :
        print("No"); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach 
using System;
  
class GFG 
      
    // Function that returns true 
    // if n is prime 
    static bool Prime(int n) 
    
          
        // There is no prime 
        // less than 2 
        if (n < 2) 
            return false
      
        // Run a loop from 2 to sqrt(n) 
        for (int i = 2; i <= (int)Math.Sqrt(n); i++) 
      
            // If there is any factor 
            if (n % i == 0) 
                return false
        return true
    
      
    // Function that returns true if n 
    // has a prime count of divisors 
    static bool primeCountDivisors(int n) 
    
        if (n < 2) 
            return false
      
        // Find the prime factors 
        for (int i = 2; i <= (int)Math.Sqrt(n); i++) 
            if (n % i == 0) 
            
      
                // Find the maximum value of i for every 
                // prime divisor p such that n % (p^i) == 0 
                long a = n, c = 0; 
                while (a % i == 0) 
                
                    a /= i; 
                    c++; 
                
      
                // If c+1 is a prime number and a = 1 
                if (a == 1 && Prime((int)c + 1) == true
                    return true
      
                // The number cannot have two factors 
                // to have count of divisors prime 
                else
                    return false
            
      
        // Else the number is prime so 
        // it has only two divisors 
        return true
    
      
    // Driver code 
    public static void Main() 
    
        int n = 13; 
      
        if (primeCountDivisors(n)) 
            Console.WriteLine("Yes"); 
        else
            Console.WriteLine("No"); 
    
  
// This code is contributed by AnkitRai01 

chevron_right


Output:

Yes

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01