Given a number n. The problem is to check whether every bit in the binary representation of the given number is set or not. Here 0 <= n.
Examples :
Input : 7 Output : Yes (7)10 = (111)2 Input : 14 Output : No
Method 1: If n = 0, then answer is ‘No’. Else perform the two operations until n becomes 0.
While (n > 0) If n & 1 == 0, return 'No' n >> 1
If loop terminates without returning ‘No’, then all bits are set in the binary representation of n.
C++
// C++ implementation to check whether every // digit in the binary representation of the // given number is set or not #include <bits/stdc++.h> using namespace std; // function to check if all the bits are set // or not in the binary representation of 'n' string areAllBitsSet( int n) { // all bits are not set if (n == 0) return "No" ; // loop till n becomes '0' while (n > 0) { // if the last bit is not set if ((n & 1) == 0) return "No" ; // right shift 'n' by 1 n = n >> 1; } // all bits are set return "Yes" ; } // Driver program to test above int main() { int n = 7; cout << areAllBitsSet(n); return 0; } |
Java
// java implementation to check // whether every digit in the // binary representation of the // given number is set or not import java.io.*; class GFG { // function to check if all the bits // are setthe bits are set or not // in the binary representation of 'n' static String areAllBitsSet( int n) { // all bits are not set if (n == 0 ) return "No" ; // loop till n becomes '0' while (n > 0 ) { // if the last bit is not set if ((n & 1 ) == 0 ) return "No" ; // right shift 'n' by 1 n = n >> 1 ; } // all bits are set return "Yes" ; } // Driver program to test above public static void main (String[] args) { int n = 7 ; System.out.println(areAllBitsSet(n)); } } // This code is contributed by vt_m |
Python3
# Python implementation # to check whether every # digit in the binary # representation of the # given number is set or not # function to check if # all the bits are set # or not in the binary # representation of 'n' def areAllBitsSet(n): # all bits are not set if (n = = 0 ): return "No" # loop till n becomes '0' while (n > 0 ): # if the last bit is not set if ((n & 1 ) = = 0 ): return "No" # right shift 'n' by 1 n = n >> 1 # all bits are set return "Yes" # Driver program to test above n = 7 print (areAllBitsSet(n)) # This code is contributed # by Anant Agarwal. |
C#
// C# implementation to check // whether every digit in the // binary representation of the // given number is set or not using System; class GFG { // function to check if // all the bits are set // or not in the binary // representation of 'n' static String areAllBitsSet( int n) { // all bits are not set if (n == 0) return "No" ; // loop till n becomes '0' while (n > 0) { // if the last bit // is not set if ((n & 1) == 0) return "No" ; // right shift 'n' by 1 n = n >> 1; } // all bits are set return "Yes" ; } // Driver Code static public void Main () { int n = 7; Console.WriteLine(areAllBitsSet(n)); } } // This code is contributed by ajit |
PHP
<?php // PHP implementation to check // whether every digit in the // binary representation of the // given number is set or not // function to check if all the // bits are set or not in the // binary representation of 'n' function areAllBitsSet( $n ) { // all bits are not set if ( $n == 0) return "No" ; // loop till n becomes '0' while ( $n > 0) { // if the last bit is not set if (( $n & 1) == 0) return "No" ; // right shift 'n' by 1 $n = $n >> 1; } // all bits are set return "Yes" ; } // Driver Code $n = 7; echo areAllBitsSet( $n ); // This code is contributed by aj_36 ?> |
Output :
Yes
Time Complexity : O(d), where ‘d’ is the number of bits in the binary representation of n.
Method 2: If n = 0, then answer is ‘No’. Else add 1 to n. Let it be num = n + 1. If num & (num – 1) == 0, then all bits are set, else all bits are not set.
Explanation: If all bits in the binary representation of n are set, then adding ‘1’ to it will produce a number which will be a perfect power of 2. Now, check whether the new number is a perfect power of 2 or not.
C++
// C++ implementation to check whether every // digit in the binary representation of the // given number is set or not #include <bits/stdc++.h> using namespace std; // function to check if all the bits are set // or not in the binary representation of 'n' string areAllBitsSet( int n) { // all bits are not set if (n == 0) return "No" ; // if true, then all bits are set if (((n + 1) & n) == 0) return "Yes" ; // else all bits are not set return "No" ; } // Driver program to test above int main() { int n = 7; cout << areAllBitsSet(n); return 0; } |
Java
// JAVA implementation to check whether // every digit in the binary representation // of the given number is set or not import java.io.*; class GFG { // function to check if all the // bits are set or not in the // binary representation of 'n' static String areAllBitsSet( int n) { // all bits are not set if (n == 0 ) return "No" ; // if true, then all bits are set if (((n + 1 ) & n) == 0 ) return "Yes" ; // else all bits are not set return "No" ; } // Driver program to test above public static void main (String[] args) { int n = 7 ; System.out.println(areAllBitsSet(n)); } } // This code is contributed by vt_m |
Python3
# Python implementation to # check whether every # digit in the binary # representation of the # given number is set or not # function to check if # all the bits are set # or not in the binary # representation of 'n' def areAllBitsSet(n): # all bits are not set if (n = = 0 ): return "No" # if true, then all bits are set if (((n + 1 ) & n) = = 0 ): return "Yes" # else all bits are not set return "No" # Driver program to test above n = 7 print (areAllBitsSet(n)) # This code is contributed # by Anant Agarwal. |
C#
// C# implementation to check // whether every digit in the // binary representation of // the given number is set or not using System; class GFG { // function to check if all the // bits are set or not in the // binary representation of 'n' static String areAllBitsSet( int n) { // all bits are not set if (n == 0) return "No" ; // if true, then all // bits are set if (((n + 1) & n) == 0) return "Yes" ; // else all bits are not set return "No" ; } // Driver Code static public void Main () { int n = 7; Console.WriteLine(areAllBitsSet(n)); } } // This code is contributed by m_kit |
PHP
<?php // PHP implementation to check // whether every digit in the // binary representation of the // given number is set or not // function to check if all // the bits are set or not in // the binary representation of 'n' function areAllBitsSet( $n ) { // all bits are not set if ( $n == 0) return "No" ; // if true, then all // bits are set if ((( $n + 1) & $n ) == 0) return "Yes" ; // else all bits // are not set return "No" ; } // Driver Code $n = 7; echo areAllBitsSet( $n ); // This code is contributed by ajit ?> |
Output :
Yes
References:
https://www.careercup.com/question?id=9503107
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.