Apothem of a n-sided regular polygon

Given here the side length a of a regular n-sided polygon, the task is to find the length of its Apothem.
Apothem is the line drawn from the center of the polygon that is perpendicular to one of its sides.
Examples:

Input a = 9, n = 6
Output: 7.79424

Input: a = 8, n = 7
Output: 8.30609

Approach:



In the figure, we see the polygon can be divided into n equal triangles.
Looking into one of the triangles, we see the whole angle at the centre can be divided into = 360/n
So, angle t = 180/n
now, tan t = a/2h
So, h = a/(2*tan t)
here, h is the apothem,
so, apothem = a/(2*tan(180/n))

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the apothem
// of a regular polygon with given side length
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the apothem
// of a regular polygon
float polyapothem(float n, float a)
{
  
    // Side and side length cannot be negative
    if (a < 0 && n < 0)
        return -1;
  
    // Degree converted to radians
    return a / (2 * tan((180 / n) * 3.14159 / 180));
}
  
// Driver code
int main()
{
    float a = 9, n = 6;
    cout << polyapothem(n, a) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to find the apothem of a 
// regular polygon with given side length
import java.util.*;
  
class GFG
{
  
    // Function to find the apothem
    // of a regular polygon
    double polyapothem(double n, double a)
    {
  
        // Side and side length cannot be negative
        if (a < 0 && n < 0)
            return -1;
  
        // Degree converted to radians
        return (a / (2 * java.lang.Math.tan((180 / n)
                * 3.14159 / 180)));
    }
  
// Driver code
public static void main(String args[])
{
    double a = 9, n = 6;
    GFG g=new GFG();
    System.out.println(g.polyapothem(n, a));
}
  
}
//This code is contributed by Shivi_Aggarwal

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 Program to find the apothem
# of a regular polygon with given side
# length
from math import tan
  
# Function to find the apothem
# of a regular polygon
def polyapothem(n, a):
      
    # Side and side length cannot be negative
    if (a < 0 and n < 0):
        return -1
  
    # Degree converted to radians
    return a / (2 * tan((180 / n) * 
                   3.14159 / 180))
  
# Driver code
if __name__ == '__main__':
    a = 9
    n = 6
    print('{0:.6}'.format(polyapothem(n, a)))
      
# This code is contributed by
# Sahil_Shelangia

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the apothem of a 
// regular polygon with given side length 
using System;
  
class GFG 
  
// Function to find the apothem 
// of a regular polygon 
static double polyapothem(double n, 
                          double a) 
  
    // Side and side length cannot
    // be negative 
    if (a < 0 && n < 0) 
        return -1; 
  
    // Degree converted to radians 
    return (a / (2 * Math.Tan((180 / n) * 
                       3.14159 / 180))); 
  
// Driver code 
public static void Main() 
    double a = 9, n = 6; 
    Console.WriteLine(Math.Round(polyapothem(n, a), 4)); 
  
// This code is contributed by Ryuga

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP Program to find the apothem of a
// regular polygon with given side length
  
// Function to find the apothem
// of a regular polygon
function polyapothem($n, $a)
{
  
    // Side and side length cannot
    // be negative
    if ($a < 0 && $n < 0)
        return -1;
  
    // Degree converted to radians
    return $a / (2 * tan((180 / $n) * 
                    3.14159 / 180));
}
  
// Driver code
$a = 9; $n = 6;
echo polyapothem($n, $a) . "\n";
  
// This code is contributed
// by Akanksha Rai
?>

chevron_right


Output:

7.79424


My Personal Notes arrow_drop_up

Budding Web DeveloperKeen learnerAverage CoderDancer&Social Activist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.