Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

XOR of all Prime numbers in an Array

  • Difficulty Level : Basic
  • Last Updated : 11 May, 2021

Given an array of integers arr[]. The task is to find the bitwise XOR of all the prime numbers present in the array.
Examples
 

Input: arr[] = {2, 5, 8, 4, 3}
Output: 4

Input: arr[] = {7, 12, 2, 6, 11}
Output: 14

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: 
 

  • Create a sieve to check whether an element is prime or not in O(1).
  • Traverse the array and check if the number is prime.
  • Compute the xor of all the prime elements of the array.

Below is the implementation of the above approach: 
 

C++




// C++ program to find Xor of all
// Prime numbers in array
 
#include <bits/stdc++.h>
using namespace std;
 
bool prime[100005];
 
void SieveOfEratosthenes(int n)
{
 
    memset(prime, true, sizeof(prime));
 
    // false here indicates
    // that it is not prime
    prime[1] = false;
 
    for (int p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (int i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to compute xor of all
// prime elements
int xorPrimes(int arr[], int n)
{
    SieveOfEratosthenes(100005);
 
    int xorVal = 0;
 
    for (int i = 0; i < n; i++) {
 
        // if the element is prime
        if (prime[arr[i]])
            xorVal = xorVal ^ arr[i];
    }
 
    return xorVal;
}
 
// Driver code
int main()
{
 
    int arr[] = { 4, 3, 2, 6, 100, 17 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    cout << xorPrimes(arr, n);
 
    return 0;
}

Java




// Java program to find Xor of all
// Prime numbers in array
import java.util.Arrays;
 
 
class GFG
{
    static boolean prime[] = new boolean[100005];
 
    static void SieveOfEratosthenes(int n)
    {
        Arrays.fill(prime, true);
 
        // false here indicates
        // that it is not prime
        prime[1] = false;
 
        for (int p = 2; p * p < n; p++)
        {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p])
            {
                // Update all multiples of p,
                // set them to non-prime
                for (int i = p * 2; i < n; i += p)
                {
                    prime[i] = false;
                }
            }
        }
    }
 
    // Function to compute xor of all
    // prime elements
    static int xorPrimes(int arr[], int n)
    {
        SieveOfEratosthenes(100005);
        int xorVal = 0;
        for (int i = 0; i < n; i++)
        {
            // if the element is prime
            if (prime[arr[i]])
            {
                xorVal = xorVal ^ arr[i];
            }
        }
        return xorVal;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = {4, 3, 2, 6, 100, 17};
        int n = arr.length;
        System.out.println(xorPrimes(arr, n));
    }
}
 
// This code is contributed by
// Rajput-Ji

Python3




# Python3 program to find Xor of
# all Prime numbers in array
 
prime = [True] * (100005)
 
def SieveOfEratosthenes(n):
  
    # False here indicates
    # that it is not prime
    prime[1] = False
    p = 2
     
    while p*p <= n:
 
        # If prime[p] is not changed,
        # then it is a prime
        if prime[p]: 
 
            # Update all multiples of p,
            # set them to non-prime
            for i in range(p * 2, n+1, p):
                prime[i] = False
                 
        p += 1
          
# Function to compute xor
# of all prime elements
def xorPrimes(arr, n):
  
    SieveOfEratosthenes(100004)
 
    xorVal = 0
    for i in range(0, n): 
 
        # if the element is prime
        if prime[arr[i]]:
            xorVal = xorVal ^ arr[i]
      
    return xorVal
  
# Driver code
if __name__ == "__main__":
  
    arr = [4, 3, 2, 6, 100, 17
    n = len(arr)
 
    print(xorPrimes(arr, n))
 
# This code is contributed by Rituraj Jain

C#




// C# program to find Xor of all
// Prime numbers in array
using System;
 
class GFG
{
    static bool []prime = new bool[100005];
 
    static void SieveOfEratosthenes(int n)
    {
        for(int i = 0; i < 100005; i++)
            prime[i] = true;
 
        // false here indicates
        // that it is not prime
        prime[1] = false;
 
        for (int p = 2; p * p < n; p++)
        {
 
            // If prime[p] is not changed,
            // then it is a prime
            if (prime[p])
            {
                // Update all multiples of p,
                // set them to non-prime
                for (int i = p * 2; i < n; i += p)
                {
                    prime[i] = false;
                }
            }
        }
    }
 
    // Function to compute xor of all
    // prime elements
    static int xorPrimes(int []arr, int n)
    {
        SieveOfEratosthenes(100005);
        int xorVal = 0;
        for (int i = 0; i < n; i++)
        {
            // if the element is prime
            if (prime[arr[i]])
            {
                xorVal = xorVal ^ arr[i];
            }
        }
        return xorVal;
    }
 
    // Driver code
    public static void Main()
    {
        int []arr = {4, 3, 2, 6, 100, 17};
        int n = arr.Length;
        Console.WriteLine(xorPrimes(arr, n));
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript




<script>
 
// Javascript program to find Xor of all
// Prime numbers in array
 
var prime = Array(100005).fill(true);
 
function SieveOfEratosthenes( n)
{
 
    // false here indicates
    // that it is not prime
    prime[1] = false;
 
    for (var p = 2; p * p <= n; p++) {
 
        // If prime[p] is not changed,
        // then it is a prime
        if (prime[p]) {
 
            // Update all multiples of p,
            // set them to non-prime
            for (var i = p * 2; i <= n; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to compute xor of all
// prime elements
function xorPrimes( arr, n)
{
    SieveOfEratosthenes(100005);
 
    var xorVal = 0;
 
    for (var i = 0; i < n; i++) {
 
        // if the element is prime
        if (prime[arr[i]])
            xorVal = xorVal ^ arr[i];
    }
 
    return xorVal;
}
 
// Driver code
var arr = [ 4, 3, 2, 6, 100, 17 ];
var n = arr.length;
document.write( xorPrimes(arr, n));
 
</script>
Output: 
16

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!