Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

XOR of all possible pairwise sum from two given Arrays

  • Difficulty Level : Hard
  • Last Updated : 14 Jun, 2021

Given two arrays A[] and B[] of equal length, the task is to find the Bitwise XOR of the pairwise sum of the given two arrays.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: A[] = {1, 2}, B[] = {3, 4} 
Output:
Explanation: 
Sum of all possible pairs are {4(1 + 3), 5(1 + 4), 5(2 + 3), 6(2 + 4)} 
XOR of all the pair sums = 4 ^ 5 ^ 5 ^ 6 = 2



Input: A[] = {4, 6, 0, 0, 3, 3}, B[] = {0, 5, 6, 5, 0, 3} 
Output: 8

Naive Approach: The simplest approach to solve the problem is to generate all possible pairs from the two given arrays and calculate their respective sums and update XOR with the sum of pairs. Finally, print the XOR obtained.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum of
// XOR of the sum of every pair
int XorSum(int A[], int B[], int N)
{
 
    // Stores the XOR of sums
    // of every pair
    int ans = 0;
 
    // Iterate to generate all possible pairs
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
 
            // Update XOR
            ans = ans ^ (A[i] + B[j]);
        }
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
int main()
{
 
    int A[] = { 4, 6, 0, 0, 3, 3 };
 
    int B[] = { 0, 5, 6, 5, 0, 3 };
    int N = sizeof A / sizeof A[0];
 
    cout << XorSum(A, B, N) << endl;
 
    return 0;
}

Java




// Java program to implement
// the above approach
import java.io.*;
 
class GFG{
 
// Function to calculate the sum of
// XOR of the sum of every pair
static int XorSum(int A[], int B[], int N)
{
     
    // Stores the XOR of sums
    // of every pair
    int ans = 0;
 
    // Iterate to generate all possible pairs
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < N; j++)
        {
             
            // Update XOR
            ans = ans ^ (A[i] + B[j]);
        }
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
public static void main (String[] args)
{
    int A[] = { 4, 6, 0, 0, 3, 3 };
    int B[] = { 0, 5, 6, 5, 0, 3 };
     
    int N = A.length;
     
    System.out.println(XorSum(A, B, N));
}
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 program to implement
# the above approach
 
# Function to calculate the sum of
# XOR of the sum of every pair
def XorSum(A, B, N):
 
    # Stores the XOR of sums
    # of every pair
    ans = 0
 
    # Iterate to generate all
    # possible pairs
    for i in range(N):
        for j in range(N):
 
            # Update XOR
            ans = ans ^ (A[i] + B[j])
 
    # Return the answer
    return ans
 
# Driver Code
if __name__ == "__main__":
 
    A = [ 4, 6, 0, 0, 3, 3 ]
    B = [ 0, 5, 6, 5, 0, 3 ]
    N = len(A)
 
    print (XorSum(A, B, N))
 
# This code is contributed by chitranayal

C#




// C# program to implement
// the above approach
using System;
class GFG{
 
// Function to calculate the sum of
// XOR of the sum of every pair
static int XorSum(int []A, int []B, int N)
{   
    // Stores the XOR of sums
    // of every pair
    int ans = 0;
 
    // Iterate to generate all possible pairs
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < N; j++)
        {           
            // Update XOR
            ans = ans ^ (A[i] + B[j]);
        }
    }
 
    // Return the answer
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []A = {4, 6, 0, 0, 3, 3};
    int []B = {0, 5, 6, 5, 0, 3};
    int N = A.Length;   
    Console.WriteLine(XorSum(A, B, N));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// javascript program to implement
// the above approach
 
    // Function to calculate the sum of
    // XOR of the sum of every pair
    function XorSum(A , B , N) {
 
        // Stores the XOR of sums
        // of every pair
        var ans = 0;
 
        // Iterate to generate all possible pairs
        for (i = 0; i < N; i++) {
            for (j = 0; j < N; j++) {
 
                // Update XOR
                ans = ans ^ (A[i] + B[j]);
            }
        }
 
        // Return the answer
        return ans;
    }
 
    // Driver Code
     
        var A = [ 4, 6, 0, 0, 3, 3 ];
        var B = [ 0, 5, 6, 5, 0, 3 ];
 
        var N = A.length;
 
        document.write(XorSum(A, B, N));
 
// This code contributed by umadevi9616
</script>
Output: 
8

Time Complexity: O(N2
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized using the Bit Manipulation technique. Follow the steps below to solve the problem:

  • Considering only the Kth bit, the task is to count the number of pairs (i, j) such that the Kth bit of (Ai + Bj) is set.
  • If this number is odd, add X = 2k to the answer. We are only interested in the values of (ai, bj) in modulo 2X.
  • Thus, replace ai with ai % (2X) and bj with bj % (2X), and assume that ai and bj < 2X.
  • There are two cases when the kth bit of (ai + bj) is set:
    • x ≤ ai + bj < 2x
    • 3x ≤ ai + bj < 4x
  • Hence, sort b[] in increasing order. For a fixed i, the set of j that satisfies X ≤ (ai +bj) < 2X forms an interval.
  • Therefore, count the number of such j by Binary search. Similarly, handle the second case.

Below is the implementation of the above approach:

C++




// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the
// XOR of the sum of every pair
int XorSum(int A[], int B[], int N)
{
 
    // Stores the maximum bit
    const int maxBit = 29;
 
    int ans = 0;
 
    // Look for all the k-th bit
    for (int k = 0; k < maxBit; k++) {
 
        // Stores the modulo of
        // elements B[] with (2^(k+1))
        int C[N];
 
        for (int i = 0; i < N; i++) {
 
            // Calculate modulo of
            // array B[] with (2^(k+1))
            C[i] = B[i] % (1 << (k + 1));
        }
 
        // Sort the array C[]
        sort(C, C + N);
 
        // Stores the total number
        // whose k-th bit is set
        long long count = 0;
        long long l, r;
 
        for (int i = 0; i < N; i++) {
 
            // Calculate and store the modulo
            // of array A[] with (2^(k+1))
            int x = A[i] % (1 << (k + 1));
 
            // Lower bound to count the number
            // of elements having k-th bit in
            // the range (2^k - x, 2* 2^(k) - x)
            l = lower_bound(C,
                            C + N,
                            (1 << k) - x)
                - C;
 
            r = lower_bound(C,
                            C + N,
                            (1 << k) * 2 - x)
                - C;
 
            // Add total number i.e (r - l)
            // whose k-th bit is one
            count += (r - l);
 
            // Lower bound to count the number
            // of elements having k-th bit in
            // range (3 * 2^k - x, 4*2^(k) - x)
            l = lower_bound(C,
                            C + N,
                            (1 << k) * 3 - x)
                - C;
            r = lower_bound(C,
                            C + N,
                            (1 << k) * 4 - x)
                - C;
 
            count += (r - l);
        }
 
        // If count is even, Xor of
        // k-th bit becomes zero, no
        // need to add to the answer.
        // If count is odd, only then,
        // add to the final answer
        if (count & 1)
            ans += (1 << k);
    }
 
    // Return answer
    return ans;
}
 
// Driver code
int main()
{
    int A[] = { 4, 6, 0, 0, 3, 3 };
    int B[] = { 0, 5, 6, 5, 0, 3 };
    int N = sizeof A / sizeof A[0];
 
    // Function call
    cout << XorSum(A, B, N) << endl;
 
    return 0;
}

Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG{
     
// Lower bound
static int lower_bound(int[] a, int low,
                       int high, int element)
{
    while(low < high)
    {
        int middle = low + (high - low) / 2;
        if(element > a[middle])
            low = middle + 1;
        else
            high = middle;
    }
    return low;
}
 
// Function to calculate the
// XOR of the sum of every pair
static int XorSum(int A[],
                  int B[], int N)
{
    // Stores the maximum bit
    final int maxBit = 29;
 
    int ans = 0;
 
    // Look for all the k-th bit
    for (int k = 0; k < maxBit; k++)
    {
        // Stores the modulo of
        // elements B[] with (2^(k+1))
        int []C = new int[N];
 
    for (int i = 0; i < N; i++)
    {
        // Calculate modulo of
        // array B[] with (2^(k+1))
        C[i] = B[i] % (1 << (k + 1));
    }
 
    // Sort the array C[]
    Arrays.sort(C);
 
    // Stores the total number
    // whose k-th bit is set
    long count = 0;
    long l, r;
 
    for (int i = 0; i < N; i++)
    {
        // Calculate and store the modulo
        // of array A[] with (2^(k+1))
        int x = A[i] % (1 << (k + 1));
 
        // Lower bound to count
        // the number of elements
        // having k-th bit in
        // the range (2^k - x,
        // 2* 2^(k) - x)
        l = lower_bound(C, 0, N,
                       (1 << k) - x);
 
        r = lower_bound(C, 0, N,
                       (1 << k) *
                        2 - x);
 
        // Add total number i.e
        // (r - l) whose k-th bit is one
        count += (r - l);
 
        // Lower bound to count
        // the number of elements
        // having k-th bit in
        // range (3 * 2^k - x,
        // 4*2^(k) - x)
        l = lower_bound(C, 0, N,
                       (1 << k) *
                        3 - x);
        r = lower_bound(C, 0, N,
                       (1 << k) *
                        4 - x);
 
        count += (r - l);
    }
 
    // If count is even, Xor of
    // k-th bit becomes zero, no
    // need to add to the answer.
    // If count is odd, only then,
    // add to the final answer
    if ((count & 1) != 0)
        ans += (1 << k);
}
 
// Return answer
return ans;
}
 
// Driver code
public static void main(String[] args)
{
    int A[] = {4, 6, 0, 0, 3, 3};
    int B[] = {0, 5, 6, 5, 0, 3};
    int N = A.length;
 
    // Function call
    System.out.print(XorSum(A, B,
                            N) + "\n");
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python3 program to implement
# the above approach
from bisect import bisect, bisect_left, bisect_right
 
# Function to calculate the
# XOR of the sum of every pair
def XorSum(A, B, N):
     
    # Stores the maximum bit
    maxBit = 29
 
    ans = 0
 
    # Look for all the k-th bit
    for k in range(maxBit):
         
        # Stores the modulo of
        # elements B[] with (2^(k+1))
        C = [0] * N
         
        for i in range(N):
             
            # Calculate modulo of
            # array B[] with (2^(k+1))
            C[i] = B[i] % (1 << (k + 1))
 
        # Sort the array C[]
        C = sorted(C)
 
        # Stores the total number
        # whose k-th bit is set
        count = 0
        l, r = 0, 0
 
        for i in range(N):
             
            # Calculate and store the modulo
            # of array A[] with (2^(k+1))
            x = A[i] % (1 << (k + 1))
 
            # Lower bound to count the number
            # of elements having k-th bit in
            # the range (2^k - x, 2* 2^(k) - x)
            l = bisect_left(C, (1 << k) - x)
 
            r = bisect_left(C, (1 << k) * 2 - x)
 
            # Add total number i.e (r - l)
            # whose k-th bit is one
            count += (r - l)
 
            # Lower bound to count the number
            # of elements having k-th bit in
            # range (3 * 2^k - x, 4*2^(k) - x)
            l = bisect_left(C, (1 << k) * 3 - x)
            r = bisect_left(C, (1 << k) * 4 - x)
             
            count += (r - l)
 
        # If count is even, Xor of
        # k-th bit becomes zero, no
        # need to add to the answer.
        # If count is odd, only then,
        # add to the final answer
        if (count & 1):
            ans += (1 << k)
 
    # Return answer
    return ans
 
# Driver code
if __name__ == '__main__':
     
    A = [ 4, 6, 0, 0, 3, 3 ]
    B = [ 0, 5, 6, 5, 0, 3 ]
    N = len(A)
 
    # Function call
    print(XorSum(A, B, N))
 
# This code is contributed by mohit kumar 29

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Lower bound
static int lower_bound(int[] a, int low,
                       int high, int element)
{
    while (low < high)
    {
        int middle = low + (high - low) / 2;
        if (element > a[middle])
            low = middle + 1;
        else
            high = middle;
    }
    return low;
}
 
// Function to calculate the
// XOR of the sum of every pair
static int XorSum(int[] A, int[] B, int N)
{
     
    // Stores the maximum bit
    int maxBit = 29;
 
    int ans = 0;
 
    // Look for all the k-th bit
    for(int k = 0; k < maxBit; k++)
    {
         
        // Stores the modulo of
        // elements B[] with (2^(k+1))
        int[] C = new int[N];
 
        for(int i = 0; i < N; i++)
        {
             
            // Calculate modulo of
            // array B[] with (2^(k+1))
            C[i] = B[i] % (1 << (k + 1));
        }
 
        // Sort the array C[]
        Array.Sort(C);
 
        // Stores the total number
        // whose k-th bit is set
        long count = 0;
        long l, r;
 
        for(int i = 0; i < N; i++)
        {
             
            // Calculate and store the modulo
            // of array A[] with (2^(k+1))
            int x = A[i] % (1 << (k + 1));
 
            // Lower bound to count
            // the number of elements
            // having k-th bit in
            // the range (2^k - x,
            // 2* 2^(k) - x)
            l = lower_bound(C, 0, N,
                            (1 << k) - x);
 
            r = lower_bound(C, 0, N,
                            (1 << k) * 2 - x);
 
            // Add total number i.e
            // (r - l) whose k-th bit is one
            count += (r - l);
 
            // Lower bound to count
            // the number of elements
            // having k-th bit in
            // range (3 * 2^k - x,
            // 4*2^(k) - x)
            l = lower_bound(C, 0, N,
                            (1 << k) * 3 - x);
            r = lower_bound(C, 0, N,
                            (1 << k) * 4 - x);
 
            count += (r - l);
        }
 
        // If count is even, Xor of
        // k-th bit becomes zero, no
        // need to add to the answer.
        // If count is odd, only then,
        // add to the final answer
        if ((count & 1) != 0)
            ans += (1 << k);
    }
 
    // Return answer
    return ans;
}
 
// Driver code
public static void Main(string[] args)
{
    int[] A = { 4, 6, 0, 0, 3, 3 };
    int[] B = { 0, 5, 6, 5, 0, 3 };
    int N = A.Length;
 
    // Function call
    Console.Write(XorSum(A, B, N) + "\n");
}
}
 
// This code is contributed by grand_master

Javascript




<script>
// Javascript Program to implement
// the above approach
 
// Lower bound
function lower_bound(a,low,high,element)
{
    while(low < high)
    {
        let middle = low + Math.floor((high - low) / 2);
        if(element > a[middle])
            low = middle + 1;
        else
            high = middle;
    }
    return low;
}
 
// Function to calculate the
// XOR of the sum of every pair
function XorSum(A,B,N)
{
    // Stores the maximum bit
    let maxBit = 29;
  
    let ans = 0;
  
    // Look for all the k-th bit
    for (let k = 0; k < maxBit; k++)
    {
        // Stores the modulo of
        // elements B[] with (2^(k+1))
        let C = new Array(N);
  
    for (let i = 0; i < N; i++)
    {
        // Calculate modulo of
        // array B[] with (2^(k+1))
        C[i] = B[i] % (1 << (k + 1));
    }
  
    // Sort the array C[]
    C.sort(function(x,y){return x-y;});
  
    // Stores the total number
    // whose k-th bit is set
    let count = 0;
    let l, r;
  
    for (let i = 0; i < N; i++)
    {
        // Calculate and store the modulo
        // of array A[] with (2^(k+1))
        let x = A[i] % (1 << (k + 1));
  
        // Lower bound to count
        // the number of elements
        // having k-th bit in
        // the range (2^k - x,
        // 2* 2^(k) - x)
        l = lower_bound(C, 0, N,
                       (1 << k) - x);
  
        r = lower_bound(C, 0, N,
                       (1 << k) *
                        2 - x);
  
        // Add total number i.e
        // (r - l) whose k-th bit is one
        count += (r - l);
  
        // Lower bound to count
        // the number of elements
        // having k-th bit in
        // range (3 * 2^k - x,
        // 4*2^(k) - x)
        l = lower_bound(C, 0, N,
                       (1 << k) *
                        3 - x);
        r = lower_bound(C, 0, N,
                       (1 << k) *
                        4 - x);
  
        count += (r - l);
    }
  
    // If count is even, Xor of
    // k-th bit becomes zero, no
    // need to add to the answer.
    // If count is odd, only then,
    // add to the final answer
    if ((count & 1) != 0)
        ans += (1 << k);
}
  
// Return answer
return ans;
}
 
// Driver code
let A=[4, 6, 0, 0, 3, 3];
let B=[0, 5, 6, 5, 0, 3];
let N = A.length;
// Function call
    document.write(XorSum(A, B,
                            N) + "\n");
 
 
// This code is contributed by avanitrachhadiya2155
</script>
Output: 
8

Time Complexity: O(NlogN) 
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!