Skip to content
Related Articles

Related Articles

Find all pairwise sum possible using elements at opposite ends with minimum replacements

View Discussion
Improve Article
Save Article
  • Last Updated : 23 Feb, 2022
View Discussion
Improve Article
Save Article

Given an array arr[] of even length N and an integer K denoting the range of numbers in the array i.e. the numbers in the array are in the range [1, K]. The task is to find all opposite indices pair sums possible with minimum replacements where in any replacement any number of the array can be changed to any other number in the range [1, K]. 

Note: Two indices i and j are said to be opposite if the distance of i from start and distance of j from the end are equal and i is in the first half of the array and j in the last half of the array.

Examples:

Input: arr[] = {1, 2, 4, 3}, K = 4
Output: 4 6
Explanation: Initially the pair sum is 1+3 = 4 and 2+4 = 6 which is not equal.
Replace 4 with 2 in one step (minimum moves) and it will give two pairs having sum 4.
Or change the 1 to 3 in one step, that will give two pairs having sum 6.
So there are two possible values of equal sum of all pairs, 4 and 6, in minimum moves.

Input: arr[] = {1, 2, 4, 6, 5, 3}, K = 6
Output: 7
Explanation: The three different pair sums are 4, 7, and 10.
Change 3 to 6 and 6 to 3. and this will give all the pair sum as 7 with minimum changes.
Notice here pair sum cannot be made 4 as {4, 6} itself will require 2 .
So total changes will not be minimum.
And also pair sum cannot be made 10 as then 3 should be changed to 9 or 1 to 7.
Both the values lies outside the range [1, 6]. 

 

Approach: This problem is based on the sweeping algorithm. For every pair find the max and min value that it can take and create segments so that minimum operations can be achieved. Find the most overlapping segments and also mark the total sum in the segments. In this way, the minimum sum values that make equal pairs can be found.

Below is the implementation of the above approach.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find the possible values
void findValues(vector<int> arr, int K)
{
  int N = arr.size();
  int range[(K * 2) + 2] = { 0 };
  for (int i = 0; i < N / 2; i++) {
    int mini = min(arr[i], arr[N - 1 - i]) + 1;
 
    int maxi = max(arr[i], arr[N - 1 - i]) + K;
 
    int total = arr[i] + arr[N - 1 - i];
 
    // Using the sweeping the algorithm
    // Increment the array
    range[mini]--;
    range[maxi + 1]++;
    range[total]--;
    range[total + 1]++;
  }
 
  int count = N;
  int mini = INT_MAX;
  int value = 0;
  for (int i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    mini = min(mini, count);
  }
  count = N;
  for (int i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    if (count == mini) {
      cout << i << " ";
    }
  }
}
 
// Driver code
int main()
{
 
  vector<int> arr = { 1, 2, 4, 3 };
  int K = 4;
  findValues(arr, K);
  return 0;
}
 
// This code is contributed by Potta Lokesh

Java




// Java code to implement above approach
import java.io.*;
import java.util.*;
 
class GFG {
    // Function to find the possible values
    public static void findValues(int arr[],
                                  int K)
    {
        int N = arr.length;
        int range[] = new int[K * 2 + 2];
        for (int i = 0; i < N / 2; ++i) {
            int min
                = Math.min(arr[i],
                           arr[N - 1 - i])
                  + 1;
 
            int max
                = Math.max(arr[i],
                           arr[N - 1 - i])
                  + K;
 
            int total = arr[i]
                        + arr[N - 1 - i];
 
            // Using the sweeping the algorithm
            // Increment the array
            range[min]--;
            range[max + 1]++;
            range[total]--;
            range[total + 1]++;
        }
 
        int count = N;
        int min = Integer.MAX_VALUE;
        int value = 0;
        for (int i = 2; i < K * 2 + 1;
             ++i) {
            count += range[i];
            min = Integer.min(min, count);
        }
        count = N;
        for (int i = 2; i < K * 2 + 1;
             ++i) {
            count += range[i];
            if (count == min) {
                System.out.print(i + " ");
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 4, 3 };
        int K = 4;
        findValues(arr, K);
    }
}

Python3




# Python program for the above approach
import sys
 
# Function to find the possible values
def findValues(arr, K):
 
    N = len(arr)
    ranges = [0] * ((K * 2) + 2)
 
    for i in range(0, N // 2):
        mini = min(arr[i], arr[N - 1 - i]) + 1
 
        maxi = max(arr[i], arr[N - 1 - i]) + K
        total = arr[i] + arr[N - 1 - i]
 
        # Using the sweeping the algorithm
        # Increment the array
        ranges[mini] = ranges[mini] - 1
        ranges[maxi + 1] = ranges[maxi + 1] + 1
        ranges[total] = ranges[total] - 1
        ranges[total + 1] = ranges[total + 1] + 1
 
    count = N
    mini = sys.maxsize
    value = 0
    for i in range(2, K*2+1):
        count = count + ranges[i]
        mini = min(mini, count)
 
    count = N
    for i in range(2, K*2+1):
        count = count + ranges[i]
        if (count == mini):
            print(i, end=" ")
 
# Driver code
 
arr = [1, 2, 4, 3]
K = 4
findValues(arr, K)
 
 
# This code is contributed by Taranpreet

C#




using System;
 
public class GFG{
 
  // Function to find the possible values
  public static void findValues(int[] arr,
                                int K)
  {
    int N = arr.Length;
    int[] range = new int[K * 2 + 2];
    for (int i = 0; i < N / 2; ++i) {
      int min
        = Math.Min(arr[i],
                   arr[N - 1 - i])
        + 1;
 
      int max
        = Math.Max(arr[i],
                   arr[N - 1 - i])
        + K;
 
      int total = arr[i]
        + arr[N - 1 - i];
 
      // Using the sweeping the algorithm
      // Increment the array
      range[min]--;
      range[max + 1]++;
      range[total]--;
      range[total + 1]++;
    }
 
    int count = N;
    int mn = Int32.MaxValue;
 
    for (int i = 2; i < K * 2 + 1;
         ++i) {
      count += range[i];
      mn = Math.Min(mn, count);
    }
    count = N;
    for (int i = 2; i < K * 2 + 1;
         ++i) {
      count += range[i];
      if (count == mn) {
        Console.Write(i + " ");
      }
    }
  }
 
  // Driver code
  static public void Main (){
 
    int[] arr = { 1, 2, 4, 3 };
    int K = 4;
    findValues(arr, K);
  }
}
 
// This code is contributed by hrithikgarg03188.

Javascript




<script>
// Function to find the possible values
function findValues(arr, K)
{
  let N = arr.length;
  let range = [];
  for(let i = 0; i < (K * 2) + 1; i++) {
      range[i] = 0;
  }
  for (let i = 0; i < N / 2; i++) {
    let mini = Math.min(arr[i], arr[N - 1 - i]) + 1;
 
    let maxi = Math.max(arr[i], arr[N - 1 - i]) + K;
 
    let total = arr[i] + arr[N - 1 - i];
 
    // Using the sweeping the algorithm
    // Increment the array
    range[mini]--;
    range[maxi + 1]++;
    range[total]--;
    range[total + 1]++;
  }
 
  let count = N;
  let mini = Number.MAX_SAFE_INTEGER;
  let value = 0;
  for (let i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    mini = Math.min(mini, count);
  }
  count = N;
  for (let i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    if (count == mini) {
      document.write(i + " ");
    }
  }
}
 
// Driver code
let arr = [ 1, 2, 4, 3 ];
let K = 4;
findValues(arr, K);
 
// This code is contributed by Samim Hossain Mondal.
</scripty

Output

4 6 

 
 

 

Time Complexity: O(K)
Auxiliary Space: O(K)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!