Given an array arr[] of even length N and an integer K denoting the range of numbers in the array i.e. the numbers in the array are in the range [1, K]. The task is to find all opposite indices pair sums possible with minimum replacements where in any replacement any number of the array can be changed to any other number in the range [1, K].
Note: Two indices i and j are said to be opposite if the distance of i from start and distance of j from the end are equal and i is in the first half of the array and j in the last half of the array.
Examples:
Input: arr[] = {1, 2, 4, 3}, K = 4
Output: 4 6
Explanation: Initially the pair sum is 1+3 = 4 and 2+4 = 6 which is not equal.
Replace 4 with 2 in one step (minimum moves) and it will give two pairs having sum 4.
Or change the 1 to 3 in one step, that will give two pairs having sum 6.
So there are two possible values of equal sum of all pairs, 4 and 6, in minimum moves.
Input: arr[] = {1, 2, 4, 6, 5, 3}, K = 6
Output: 7
Explanation: The three different pair sums are 4, 7, and 10.
Change 3 to 6 and 6 to 3. and this will give all the pair sum as 7 with minimum changes.
Notice here pair sum cannot be made 4 as {4, 6} itself will require 2 .
So total changes will not be minimum.
And also pair sum cannot be made 10 as then 3 should be changed to 9 or 1 to 7.
Both the values lies outside the range [1, 6].
Approach: This problem is based on the sweeping algorithm. For every pair find the max and min value that it can take and create segments so that minimum operations can be achieved. Find the most overlapping segments and also mark the total sum in the segments. In this way, the minimum sum values that make equal pairs can be found.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
void findValues(vector< int > arr, int K)
{
int N = arr.size();
int range[(K * 2) + 2] = { 0 };
for ( int i = 0; i < N / 2; i++) {
int mini = min(arr[i], arr[N - 1 - i]) + 1;
int maxi = max(arr[i], arr[N - 1 - i]) + K;
int total = arr[i] + arr[N - 1 - i];
range[mini]--;
range[maxi + 1]++;
range[total]--;
range[total + 1]++;
}
int count = N;
int mini = INT_MAX;
int value = 0;
for ( int i = 2; i < (K * 2) + 1; i++) {
count += range[i];
mini = min(mini, count);
}
count = N;
for ( int i = 2; i < (K * 2) + 1; i++) {
count += range[i];
if (count == mini) {
cout << i << " " ;
}
}
}
int main()
{
vector< int > arr = { 1, 2, 4, 3 };
int K = 4;
findValues(arr, K);
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
public static void findValues( int arr[],
int K)
{
int N = arr.length;
int range[] = new int [K * 2 + 2 ];
for ( int i = 0 ; i < N / 2 ; ++i) {
int min
= Math.min(arr[i],
arr[N - 1 - i])
+ 1 ;
int max
= Math.max(arr[i],
arr[N - 1 - i])
+ K;
int total = arr[i]
+ arr[N - 1 - i];
range[min]--;
range[max + 1 ]++;
range[total]--;
range[total + 1 ]++;
}
int count = N;
int min = Integer.MAX_VALUE;
int value = 0 ;
for ( int i = 2 ; i < K * 2 + 1 ;
++i) {
count += range[i];
min = Integer.min(min, count);
}
count = N;
for ( int i = 2 ; i < K * 2 + 1 ;
++i) {
count += range[i];
if (count == min) {
System.out.print(i + " " );
}
}
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 4 , 3 };
int K = 4 ;
findValues(arr, K);
}
}
|
Python3
import sys
def findValues(arr, K):
N = len (arr)
ranges = [ 0 ] * ((K * 2 ) + 2 )
for i in range ( 0 , N / / 2 ):
mini = min (arr[i], arr[N - 1 - i]) + 1
maxi = max (arr[i], arr[N - 1 - i]) + K
total = arr[i] + arr[N - 1 - i]
ranges[mini] = ranges[mini] - 1
ranges[maxi + 1 ] = ranges[maxi + 1 ] + 1
ranges[total] = ranges[total] - 1
ranges[total + 1 ] = ranges[total + 1 ] + 1
count = N
mini = sys.maxsize
value = 0
for i in range ( 2 , K * 2 + 1 ):
count = count + ranges[i]
mini = min (mini, count)
count = N
for i in range ( 2 , K * 2 + 1 ):
count = count + ranges[i]
if (count = = mini):
print (i, end = " " )
arr = [ 1 , 2 , 4 , 3 ]
K = 4
findValues(arr, K)
|
C#
using System;
public class GFG{
public static void findValues( int [] arr,
int K)
{
int N = arr.Length;
int [] range = new int [K * 2 + 2];
for ( int i = 0; i < N / 2; ++i) {
int min
= Math.Min(arr[i],
arr[N - 1 - i])
+ 1;
int max
= Math.Max(arr[i],
arr[N - 1 - i])
+ K;
int total = arr[i]
+ arr[N - 1 - i];
range[min]--;
range[max + 1]++;
range[total]--;
range[total + 1]++;
}
int count = N;
int mn = Int32.MaxValue;
for ( int i = 2; i < K * 2 + 1;
++i) {
count += range[i];
mn = Math.Min(mn, count);
}
count = N;
for ( int i = 2; i < K * 2 + 1;
++i) {
count += range[i];
if (count == mn) {
Console.Write(i + " " );
}
}
}
static public void Main (){
int [] arr = { 1, 2, 4, 3 };
int K = 4;
findValues(arr, K);
}
}
|
Javascript
<script>
function findValues(arr, K)
{
let N = arr.length;
let range = [];
for (let i = 0; i < (K * 2) + 1; i++) {
range[i] = 0;
}
for (let i = 0; i < N / 2; i++) {
let mini = Math.min(arr[i], arr[N - 1 - i]) + 1;
let maxi = Math.max(arr[i], arr[N - 1 - i]) + K;
let total = arr[i] + arr[N - 1 - i];
range[mini]--;
range[maxi + 1]++;
range[total]--;
range[total + 1]++;
}
let count = N;
let mini = Number.MAX_SAFE_INTEGER;
let value = 0;
for (let i = 2; i < (K * 2) + 1; i++) {
count += range[i];
mini = Math.min(mini, count);
}
count = N;
for (let i = 2; i < (K * 2) + 1; i++) {
count += range[i];
if (count == mini) {
document.write(i + " " );
}
}
}
let arr = [ 1, 2, 4, 3 ];
let K = 4;
findValues(arr, K);
</scripty
|
Time Complexity: O(K)
Auxiliary Space: O(K)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Feb, 2022
Like Article
Save Article