Given an unsigned integer, reverse all bits of it and return the number with reversed bits.
Input : n = 1
Output : 2147483648
Explanation : On a machine with size of unsigned bit as 32. Reverse of 0….001 is 100….0.
Input : n = 2147483648
Output : 1
Method1 – Simple: Loop through all the bits of an integer. If a bit at ith position is set in the i/p no. then set the bit at (NO_OF_BITS – 1) – i in o/p. Where NO_OF_BITS is number of bits present in the given number.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
unsigned int reverseBits(unsigned int num)
{
unsigned int NO_OF_BITS = sizeof (num) * 8;
unsigned int reverse_num = 0;
int i;
for (i = 0; i < NO_OF_BITS; i++) {
if ((num & (1 << i)))
reverse_num |= 1 << ((NO_OF_BITS - 1) - i);
}
return reverse_num;
}
int main()
{
unsigned int x = 2;
cout << reverseBits(x);
return 0;
}
|
c
#include <stdio.h>
unsigned int reverseBits(unsigned int num)
{
unsigned int NO_OF_BITS = sizeof (num) * 8;
unsigned int reverse_num = 0;
int i;
for (i = 0; i < NO_OF_BITS; i++) {
if ((num & (1 << i)))
reverse_num |= 1 << ((NO_OF_BITS - 1) - i);
}
return reverse_num;
}
int main()
{
unsigned int x = 2;
printf ( "%u" , reverseBits(x));
getchar ();
}
|
Python
def reverse_bits(num):
NO_OF_BITS = 32
reverse_num = 0
for i in range (NO_OF_BITS):
if (num & ( 1 << i)):
reverse_num | = 1 << ((NO_OF_BITS - 1 ) - i)
return reverse_num
x = 2
print (reverse_bits(x))
|
C#
using System;
public class GFG {
public static uint ReverseBits( uint num)
{
uint NO_OF_BITS = ( uint )( sizeof ( uint ) * 8);
uint reverse_num = 0;
int i;
for (i = 0; i < NO_OF_BITS; i++) {
if ((num & (1u << i)) != 0)
reverse_num
|= 1u << (( int )(NO_OF_BITS - 1) - i);
}
return reverse_num;
}
public static void Main()
{
uint x = 2u;
Console.WriteLine(ReverseBits(x));
}
}
|
Javascript
function reverseBits(num) {
let NO_OF_BITS = 32;
let reverse_num = 0;
for (let i = 0; i < NO_OF_BITS; i++) {
if ((num & (1 << i)) !== 0) {
reverse_num |= 1 << (NO_OF_BITS - 1) - i;
}
}
return reverse_num;
}
let x = 2;
console.log(reverseBits(x));
|
Time Complexity: O(Log n). Time complexity would be Log(num) as there are log(num) bits in a binary number “num” and we’re looping through all bits.
Auxiliary space: O(1)
Method 2 – Standard: The idea is to keep putting set bits of the num in reverse_num until num becomes zero. After num becomes zero, shift the remaining bits of reverse_num. Let num is stored using 8 bits and num be 00000110. After the loop you will get reverse_num as 00000011. Now you need to left shift reverse_num 5 more times and you get the exact reverse 01100000.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
unsigned int reverseBits(unsigned int num)
{
unsigned int count = sizeof (num) * 8 - 1;
unsigned int reverse_num = num;
num >>= 1;
while (num) {
reverse_num <<= 1;
reverse_num |= num & 1;
num >>= 1;
count--;
}
reverse_num <<= count;
return reverse_num;
}
int main()
{
unsigned int x = 1;
cout << reverseBits(x) << endl;
return 0;
}
|
C
#include <stdio.h>
unsigned int reverseBits(unsigned int num)
{
unsigned int count = sizeof (num) * 8 - 1;
unsigned int reverse_num = num;
num >>= 1;
while (num) {
reverse_num <<= 1;
reverse_num |= num & 1;
num >>= 1;
count--;
}
reverse_num <<= count;
return reverse_num;
}
int main()
{
unsigned int x = 1;
printf ( "%u" , reverseBits(x));
getchar ();
}
|
Python3
def reverseBits(num):
count = 32 - 1
reverse_num = num
num >> = 1
while (num):
reverse_num << = 1
reverse_num | = num & 1
num >> = 1
count - = 1
reverse_num << = count
return reverse_num
if __name__ = = '__main__' :
x = 1
print (reverseBits(x))
|
C#
using System;
class Program
{
static uint ReverseBits( uint num)
{
uint count = sizeof ( uint ) * 8 - 1;
uint reverse_num = num;
num >>= 1;
while (num != 0)
{
reverse_num <<= 1;
reverse_num |= num & 1;
num >>= 1;
count--;
}
reverse_num <<= ( int )count;
return reverse_num;
}
static void Main()
{
uint x = 1;
Console.WriteLine(ReverseBits(x));
}
}
|
Javascript
function reverseBits(num) {
let count = 32;
let reverseNum = 0;
while (num) {
reverseNum = (reverseNum << 1) | (num & 1);
num >>>= 1;
count--;
}
reverseNum <<= count;
return reverseNum >>> 0;
}
let x = 1;
console.log(reverseBits(x));
|
Time Complexity: O(logn) where n is the given number
Auxiliary space: O(1)
Method 3 – Lookup Table: We can reverse the bits of a number in O(1) if we know the size of the number. We can implement it using look up table. Please refer Reverse bits using lookup table in O(1) time for details.
Source : https://graphics.stanford.edu/~seander/bithacks.html
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
29 Nov, 2023
Like Article
Save Article