Given two integers X and N. The task is to find the total number of ways of selecting X men from a group of N men with or without including a particular man.
Examples:
Input: N = 3 X = 2
Output: 3
Including a man say M1, the ways can be (M1, M2) and (M1, M3).
Excluding a man say M1, the only way is (M2, M3).
Total ways = 2 + 1 = 3.
Input: N = 5 X = 3
Output: 10
Approach: The total number of ways of choosing X men from N men is NCX
- Including a particular man: We can choose (X – 1) men from (N – 1) in N – 1CX – 1.
- Excluding a particular man: We can choose X men from (N – 1) in N – 1CX
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int nCr( int n, int r)
{
int ans = 1;
for ( int i = 1; i <= r; i += 1) {
ans *= (n - r + i);
ans /= i;
}
return ans;
}
int total_ways( int N, int X)
{
return (nCr(N - 1, X - 1) + nCr(N - 1, X));
}
int main()
{
int N = 5, X = 3;
cout << total_ways(N, X);
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int nCr( int n, int r)
{
int ans = 1 ;
for ( int i = 1 ; i <= r; i += 1 )
{
ans *= (n - r + i);
ans /= i;
}
return ans;
}
static int total_ways( int N, int X)
{
return (nCr(N - 1 , X - 1 ) + nCr(N - 1 , X));
}
public static void main (String[] args)
{
int N = 5 , X = 3 ;
System.out.println (total_ways(N, X));
}
}
|
Python3
def nCr(n, r) :
ans = 1 ;
for i in range ( 1 , r + 1 ) :
ans * = (n - r + i);
ans / / = i;
return ans;
def total_ways(N, X) :
return (nCr(N - 1 , X - 1 ) + nCr(N - 1 , X));
if __name__ = = "__main__" :
N = 5 ; X = 3 ;
print (total_ways(N, X));
|
C#
using System;
class GFG
{
static int nCr( int n, int r)
{
int ans = 1;
for ( int i = 1; i <= r; i += 1)
{
ans *= (n - r + i);
ans /= i;
}
return ans;
}
static int total_ways( int N, int X)
{
return (nCr(N - 1, X - 1) + nCr(N - 1, X));
}
public static void Main (String[] args)
{
int N = 5, X = 3;
Console.WriteLine(total_ways(N, X));
}
}
|
Javascript
<script>
function nCr(n, r)
{
let ans = 1;
for (let i = 1; i <= r; i += 1) {
ans *= (n - r + i);
ans /= i;
}
return ans;
}
function total_ways(N, X)
{
return (nCr(N - 1, X - 1) + nCr(N - 1, X));
}
let N = 5, X = 3;
document.write(total_ways(N, X));
</script>
|
Time Complexity: O(X)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
13 Mar, 2022
Like Article
Save Article