Open In App
Related Articles

Total ways of selecting a group of X men from N men with or without including a particular man

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers X and N. The task is to find the total number of ways of selecting X men from a group of N men with or without including a particular man.
Examples: 
 

Input: N = 3 X = 2 
Output:
Including a man say M1, the ways can be (M1, M2) and (M1, M3). 
Excluding a man say M1, the only way is (M2, M3). 
Total ways = 2 + 1 = 3.
Input: N = 5 X = 3 
Output: 10 
 

 

Approach: The total number of ways of choosing X men from N men is NCX 
 

  • Including a particular man: We can choose (X – 1) men from (N – 1) in N – 1CX – 1.
  • Excluding a particular man: We can choose X men from (N – 1) in N – 1CX

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the value of nCr
int nCr(int n, int r)
{
 
    // Initialize the answer
    int ans = 1;
 
    for (int i = 1; i <= r; i += 1) {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans /= i;
    }
    return ans;
}
 
// Function to return the count of ways
int total_ways(int N, int X)
{
    return (nCr(N - 1, X - 1) + nCr(N - 1, X));
}
 
// Driver code
int main()
{
    int N = 5, X = 3;
 
    cout << total_ways(N, X);
 
    return 0;
}


Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the value of nCr
static int nCr(int n, int r)
{
 
    // Initialize the answer
    int ans = 1;
 
    for (int i = 1; i <= r; i += 1)
    {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans /= i;
    }
    return ans;
}
 
// Function to return the count of ways
static int total_ways(int N, int X)
{
    return (nCr(N - 1, X - 1) + nCr(N - 1, X));
}
 
// Driver code
public static void main (String[] args)
{
    int N = 5, X = 3;
     
    System.out.println (total_ways(N, X));
}
}
 
// This code is contributed by Sachin


Python3




# Python3 implementation of the approach
 
# Function to return the value of nCr
def nCr(n, r) :
 
    # Initialize the answer
    ans = 1;
 
    for i in range(1, r + 1) :
 
        # Divide simultaneously by
        # i to avoid overflow
        ans *= (n - r + i);
        ans //= i;
 
    return ans;
 
# Function to return the count of ways
def total_ways(N, X) :
 
    return (nCr(N - 1, X - 1) + nCr(N - 1, X));
 
# Driver code
if __name__ == "__main__" :
 
    N = 5; X = 3;
 
    print(total_ways(N, X));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Function to return the value of nCr
static int nCr(int n, int r)
{
 
    // Initialize the answer
    int ans = 1;
 
    for (int i = 1; i <= r; i += 1)
    {
 
        // Divide simultaneously by
        // i to avoid overflow
        ans *= (n - r + i);
        ans /= i;
    }
    return ans;
}
 
// Function to return the count of ways
static int total_ways(int N, int X)
{
    return (nCr(N - 1, X - 1) + nCr(N - 1, X));
}
 
// Driver code
public static void Main (String[] args)
{
    int N = 5, X = 3;
     
    Console.WriteLine(total_ways(N, X));
}
}
     
// This code is contributed by 29AjayKumar


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to return the value of nCr
    function nCr(n, r)
    {
       
        // Initialize the answer
        let ans = 1;
       
        for (let i = 1; i <= r; i += 1) {
       
            // Divide simultaneously by
            // i to avoid overflow
            ans *= (n - r + i);
            ans /= i;
        }
        return ans;
    }
     
    // Function to return the count of ways
     
    function total_ways(N, X)
    {
        return (nCr(N - 1, X - 1) + nCr(N - 1, X));
    }
     
    let N = 5, X = 3;
   
    document.write(total_ways(N, X));
     
</script>


Output: 

10

 

Time Complexity: O(X)

Auxiliary Space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 13 Mar, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials