Skip to content
Related Articles

Related Articles

Improve Article

Tridecagonal Number

  • Last Updated : 17 Mar, 2021

Given a number N, the task is to find the Nth Tridecagonal number
 

A tridecagonal number is a figurate number that extends the concept of triangular and square numbers to the tridecagon(a thirteen-sided polygon). The Nth tridecagonal number counts the number of dots in a pattern of N nested tridecagons, all sharing a common corner, where the ith tridecagon in the pattern has sides made of ‘i’ dots spaced one unit apart from each other. The first few tridecagonal numbers are 1, 13, 36, 70, 115, 171 … 
 

Examples: 
 

Input: N = 2 
Output: 13 
Explanation: 
The second tridecagonal number is 13.
Input: N = 6 
Output: 171 
 

 



Approach: The Nth tridecagonal number is given by the formula: 
 

Tn = (11n^2 - 9n)/2

Below is the implementation of the above approach:
 

C++




// C++ program to find N-th
// Tridecagonal number
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find N-th
// Tridecagonal number
int Tridecagonal_num(int n)
{
    // Formula to calculate nth
    // Tridecagonal number
    return (11 * n * n - 9 * n) / 2;
}
 
// Driver Code
int main()
{
    int n = 3;
    cout << Tridecagonal_num(n) << endl;
     
    n = 10;
 
    cout << Tridecagonal_num(n) << endl;
 
    return 0;
}

Java




// Java program to find N-th
// tridecagonal number
class GFG{
 
// Function to find N-th
// tridecagonal number
static int Tridecagonal_num(int n)
{
     
    // Formula to calculate nth
    // tridecagonal number
    return (11 * n * n - 9 * n) / 2;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 3;
    System.out.print(Tridecagonal_num(n) + "\n");
     
    n = 10;
    System.out.print(Tridecagonal_num(n) + "\n");
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 program to find N-th
# tridecagonal number
 
# Function to find N-th
# tridecagonal number
def Tridecagonal_num(n):
     
    # Formula to calculate nth
    # tridecagonal number
    return (11 * n * n - 9 * n) / 2
 
# Driver Code
n = 3
print(int(Tridecagonal_num(n)))
 
n = 10
print(int(Tridecagonal_num(n)))
 
# This code is contributed by divyeshrabadiya07

C#




// C# program to find N-th
// tridecagonal number
using System;
 
class GFG{
 
// Function to find N-th
// tridecagonal number
static int Tridecagonal_num(int n)
{
     
    // Formula to calculate nth
    // tridecagonal number
    return (11 * n * n - 9 * n) / 2;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 3;
    Console.Write(Tridecagonal_num(n) + "\n");
     
    n = 10;
    Console.Write(Tridecagonal_num(n) + "\n");
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
    // Javascript program to find N-th
    // Tridecagonal number
     
    // Function to find N-th
    // Tridecagonal number
    function Tridecagonal_num(n)
    {
        // Formula to calculate nth
        // Tridecagonal number
        return (11 * n * n - 9 * n) / 2;
    }
     
    let n = 3;
    document.write(Tridecagonal_num(n) + "</br>");
       
    n = 10;
   
    document.write(Tridecagonal_num(n));
     
</script>
Output: 
36
505

 

Reference: https://en.wikipedia.org/wiki/Polygonal_number

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :