Skip to content
Related Articles
Traverse a given Matrix using Recursion
• Difficulty Level : Easy
• Last Updated : 31 May, 2021

Given a matrix arr of size N x M, the task is to traverse this matrix using recursion.
Examples:

```Input: arr[][] = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9}}
Output: 1, 2, 3, 4, 5, 6, 7, 8, 9

Input: M[][] = {{11, 12, 13},
{14, 15, 16},
{17, 18, 19}}
Output: 11, 12, 13, 14, 15, 16, 17, 18, 19```

Approach: Below are the steps to traverse the Matrix recursively:

• Base Case: If the current row or column exceeds the size N or M, respectively, the recursion is stopped.
• If the current column exceeds the total number of columns M, then the next row is started.
```if (current_col >= M)
This row ends.
Start for next row```
• If the current row exceeds the total number of rows N, then the complete traversal is stopped.
```if (current_row >= N)
Matrix has been
traversed completely```
• Recursive Case: In each recursive call,
1. The current element of the Matrix is printed.
2. Two recursive calls are made:
• One to traverse the next row, and
• Another to traverse the next column.

Below is the implementation of the above approach:

## C++

 `// C++ program to traverse the matrix recursively` `#include ``using` `namespace` `std;` `#define N 2``#define M 3` `// Function to traverse the matrix recursively``int` `traverseMatrix(``int` `arr[N][M], ``int` `current_row,``                   ``int` `current_col)``{``    ``// If the entire column is traversed``    ``if` `(current_col >= M)``        ``return` `0;` `    ``// If the entire row is traversed``    ``if` `(current_row >= N)``        ``return` `1;` `    ``// Print the value of the current``    ``// cell of the matrix``    ``cout << arr[current_row][current_col] << ``", "``;` `    ``// Recursive call to traverse the matrix``    ``// in the Horizontal direction``    ``if` `(traverseMatrix(arr, current_row,``                       ``current_col + 1)``        ``== 1)``        ``return` `1;` `    ``// Recursive call for changing the``    ``// Row of the matrix``    ``return` `traverseMatrix(arr,``                          ``current_row + 1,``                          ``0);``}` `// Driver code``int` `main()``{``    ``int` `arr[N][M] = { { 1, 2, 3 },``                      ``{ 4, 5, 6 } };` `    ``traverseMatrix(arr, 0, 0);``    ``return` `0;``}`

## Java

 `// Java program to traverse the matrix recursively``class` `GFG {``    ` `    ``final` `static` `int` `N = ``2``;``    ``final` `static` `int`  `M = ``3``;``    ` `    ``// Function to traverse the matrix recursively``    ``static` `int` `traverseMatrix(``int` `arr[][], ``int` `current_row,``                       ``int` `current_col)``    ``{``        ``// If the entire column is traversed``        ``if` `(current_col >= M)``            ``return` `0``;``    ` `        ``// If the entire row is traversed``        ``if` `(current_row >= N)``            ``return` `1``;``    ` `        ``// Print the value of the current``        ``// cell of the matrix``        ``System.out.print(arr[current_row][current_col] + ``", "``);``    ` `        ``// Recursive call to traverse the matrix``        ``// in the Horizontal direction``        ``if` `(traverseMatrix(arr, current_row,``                           ``current_col + ``1``)``            ``== ``1``)``            ``return` `1``;``    ` `        ``// Recursive call for changing the``        ``// Row of the matrix``        ``return` `traverseMatrix(arr,``                              ``current_row + ``1``,``                              ``0``);``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[][] = { { ``1``, ``2``, ``3` `},``                          ``{ ``4``, ``5``, ``6` `} };``    ` `        ``traverseMatrix(arr, ``0``, ``0``);``    ``}``}` `// This code is contributed by AnkitRai01`

## C#

 `// C# program to traverse the matrix recursively` `using` `System;` `public` `class` `GFG {``    ` `    ``static` `int` `N = 2;``    ``static` `int`  `M = 3;``    ` `    ``// Function to traverse the matrix recursively``    ``static` `int` `traverseMatrix(``int` `[,]arr, ``int` `current_row,``                       ``int` `current_col)``    ``{``        ``// If the entire column is traversed``        ``if` `(current_col >= M)``            ``return` `0;``    ` `        ``// If the entire row is traversed``        ``if` `(current_row >= N)``            ``return` `1;``    ` `        ``// Print the value of the current``        ``// cell of the matrix``        ``Console.Write(arr[current_row,current_col] + ``", "``);``    ` `        ``// Recursive call to traverse the matrix``        ``// in the Horizontal direction``        ``if` `(traverseMatrix(arr, current_row,``                           ``current_col + 1)``            ``== 1)``            ``return` `1;``    ` `        ``// Recursive call for changing the``        ``// Row of the matrix``        ``return` `traverseMatrix(arr,``                              ``current_row + 1,``                              ``0);``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main (``string``[] args)``    ``{``        ``int` `[,]arr = { { 1, 2, 3 },``                          ``{ 4, 5, 6 } };``    ` `        ``traverseMatrix(arr, 0, 0);``    ``}``}` `// This code is contributed by AnkitRai01`

## Python3

 `# Python3 program to traverse the matrix recursively``N ``=` `2``M ``=` `3` `# Function to traverse the matrix recursively``def` `traverseMatrix(arr, current_row, current_col) :` `    ``# If the entire column is traversed``    ``if` `(current_col >``=` `M) :``        ``return` `0``;` `    ``# If the entire row is traversed``    ``if` `(current_row >``=` `N) :``        ``return` `1``;` `    ``# Print the value of the current``    ``# cell of the matrix``    ``print``(arr[current_row][current_col],end``=` `", "``);` `    ``# Recursive call to traverse the matrix``    ``# in the Horizontal direction``    ``if` `(traverseMatrix(arr, current_row, current_col ``+` `1` `) ``=``=` `1``) :``        ``return` `1``;``        ` `    ``# Recursive call for changing the``    ``# Row of the matrix``    ``return` `traverseMatrix(arr, current_row ``+` `1``, ``0``);` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:``    ``arr ``=` `[ [ ``1``, ``2``, ``3` `],``            ``[ ``4``, ``5``, ``6` `] ];` `    ``traverseMatrix(arr, ``0``, ``0``);` `# This code is contributed by AnkitRai01`

## Javascript

 ``
Output:
`1, 2, 3, 4, 5, 6,`

Time Complexity: O(N * M)

Auxiliary Space: O(M), because of recursive calling

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes

My Personal Notes arrow_drop_up