Skip to content
Related Articles

Related Articles

Improve Article
Traverse a given Matrix using Recursion
  • Difficulty Level : Easy
  • Last Updated : 31 May, 2021

Given a matrix arr of size N x M, the task is to traverse this matrix using recursion.
Examples: 

Input: arr[][] = {{1, 2, 3}, 
                  {4, 5, 6},
                  {7, 8, 9}} 
Output: 1, 2, 3, 4, 5, 6, 7, 8, 9

Input: M[][] = {{11, 12, 13}, 
                  {14, 15, 16}, 
                  {17, 18, 19}}
Output: 11, 12, 13, 14, 15, 16, 17, 18, 19

Approach: Below are the steps to traverse the Matrix recursively:  

  • Base Case: If the current row or column exceeds the size N or M, respectively, the recursion is stopped.
    • If the current column exceeds the total number of columns M, then the next row is started.
if (current_col >= M)
    This row ends.
    Start for next row
  • If the current row exceeds the total number of rows N, then the complete traversal is stopped.
if (current_row >= N)
    Matrix has been
    traversed completely
  • Recursive Case: In each recursive call, 
    1. The current element of the Matrix is printed.
    2. Two recursive calls are made: 
      • One to traverse the next row, and
      • Another to traverse the next column.

Below is the implementation of the above approach: 

C++




// C++ program to traverse the matrix recursively
 
#include <iostream>
using namespace std;
 
#define N 2
#define M 3
 
// Function to traverse the matrix recursively
int traverseMatrix(int arr[N][M], int current_row,
                   int current_col)
{
    // If the entire column is traversed
    if (current_col >= M)
        return 0;
 
    // If the entire row is traversed
    if (current_row >= N)
        return 1;
 
    // Print the value of the current
    // cell of the matrix
    cout << arr[current_row][current_col] << ", ";
 
    // Recursive call to traverse the matrix
    // in the Horizontal direction
    if (traverseMatrix(arr, current_row,
                       current_col + 1)
        == 1)
        return 1;
 
    // Recursive call for changing the
    // Row of the matrix
    return traverseMatrix(arr,
                          current_row + 1,
                          0);
}
 
// Driver code
int main()
{
    int arr[N][M] = { { 1, 2, 3 },
                      { 4, 5, 6 } };
 
    traverseMatrix(arr, 0, 0);
    return 0;
}

Java




// Java program to traverse the matrix recursively
class GFG {
     
    final static int N = 2;
    final static int  M = 3;
     
    // Function to traverse the matrix recursively
    static int traverseMatrix(int arr[][], int current_row,
                       int current_col)
    {
        // If the entire column is traversed
        if (current_col >= M)
            return 0;
     
        // If the entire row is traversed
        if (current_row >= N)
            return 1;
     
        // Print the value of the current
        // cell of the matrix
        System.out.print(arr[current_row][current_col] + ", ");
     
        // Recursive call to traverse the matrix
        // in the Horizontal direction
        if (traverseMatrix(arr, current_row,
                           current_col + 1)
            == 1)
            return 1;
     
        // Recursive call for changing the
        // Row of the matrix
        return traverseMatrix(arr,
                              current_row + 1,
                              0);
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[][] = { { 1, 2, 3 },
                          { 4, 5, 6 } };
     
        traverseMatrix(arr, 0, 0);
    }
}
 
// This code is contributed by AnkitRai01

C#




// C# program to traverse the matrix recursively
 
using System;
 
public class GFG {
     
    static int N = 2;
    static int  M = 3;
     
    // Function to traverse the matrix recursively
    static int traverseMatrix(int [,]arr, int current_row,
                       int current_col)
    {
        // If the entire column is traversed
        if (current_col >= M)
            return 0;
     
        // If the entire row is traversed
        if (current_row >= N)
            return 1;
     
        // Print the value of the current
        // cell of the matrix
        Console.Write(arr[current_row,current_col] + ", ");
     
        // Recursive call to traverse the matrix
        // in the Horizontal direction
        if (traverseMatrix(arr, current_row,
                           current_col + 1)
            == 1)
            return 1;
     
        // Recursive call for changing the
        // Row of the matrix
        return traverseMatrix(arr,
                              current_row + 1,
                              0);
    }
     
    // Driver code
    public static void Main (string[] args)
    {
        int [,]arr = { { 1, 2, 3 },
                          { 4, 5, 6 } };
     
        traverseMatrix(arr, 0, 0);
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 program to traverse the matrix recursively
N = 2
M = 3
 
# Function to traverse the matrix recursively
def traverseMatrix(arr, current_row, current_col) :
 
    # If the entire column is traversed
    if (current_col >= M) :
        return 0;
 
    # If the entire row is traversed
    if (current_row >= N) :
        return 1;
 
    # Print the value of the current
    # cell of the matrix
    print(arr[current_row][current_col],end= ", ");
 
    # Recursive call to traverse the matrix
    # in the Horizontal direction
    if (traverseMatrix(arr, current_row, current_col + 1 ) == 1) :
        return 1;
         
    # Recursive call for changing the
    # Row of the matrix
    return traverseMatrix(arr, current_row + 1, 0);
 
# Driver code
if __name__ == "__main__" :
    arr = [ [ 1, 2, 3 ],
            [ 4, 5, 6 ] ];
 
    traverseMatrix(arr, 0, 0);
 
# This code is contributed by AnkitRai01

Javascript




<script>
// Javascript program to traverse the matrix recursively
 
let N = 2
let M = 3
 
// Function to traverse the matrix recursively
function traverseMatrix(arr, current_row, current_col)
{
    // If the entire column is traversed
    if (current_col >= M)
        return 0;
 
    // If the entire row is traversed
    if (current_row >= N)
        return 1;
 
    // Print the value of the current
    // cell of the matrix
    document.write(arr[current_row][current_col] + ", ");
 
    // Recursive call to traverse the matrix
    // in the Horizontal direction
    if (traverseMatrix(arr, current_row,
                    current_col + 1)
        == 1)
        return 1;
 
    // Recursive call for changing the
    // Row of the matrix
    return traverseMatrix(arr,
                        current_row + 1,
                        0);
}
 
// Driver code
 
let arr = [ [ 1, 2, 3 ],
            [ 4, 5, 6 ] ];
 
traverseMatrix(arr, 0, 0);
</script>
Output: 
1, 2, 3, 4, 5, 6,

 

Time Complexity: O(N * M)

Auxiliary Space: O(M), because of recursive calling

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :