Given a directed graph, find out if a vertex v is reachable from another vertex u for all vertex pairs (u, v) in the given graph. Here reachable mean that there is a path from vertex u to v. The reach-ability matrix is called transitive closure of a graph.
For example, consider below graph Transitive closure of above graphs is 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
We have discussed a O(V3) solution for this here. The solution was based on Floyd Warshall Algorithm. In this post a O(V2) algorithm for the same is discussed.
Below are abstract steps of algorithm.
- Create a matrix tc[V][V] that would finally have transitive closure of given graph. Initialize all entries of tc[][] as 0.
- Call DFS for every node of graph to mark reachable vertices in tc[][]. In recursive calls to DFS, we don’t call DFS for an adjacent vertex if it is already marked as reachable in tc[][].
Below is implementation of the above idea. The code uses adjacency list representation of input graph and builds a matrix tc[V][V] such that tc[u][v] would be true if v is reachable from u.
C++
// C++ program to print transitive closure of a graph #include<bits/stdc++.h> using namespace std; class Graph { int V; // No. of vertices bool **tc; // To store transitive closure list< int > *adj; // array of adjacency lists void DFSUtil( int u, int v); public : Graph( int V); // Constructor // function to add an edge to graph void addEdge( int v, int w) { adj[v].push_back(w); } // prints transitive closure matrix void transitiveClosure(); }; Graph::Graph( int V) { this ->V = V; adj = new list< int >[V]; tc = new bool * [V]; for ( int i = 0; i < V; i++) { tc[i] = new bool [V]; memset (tc[i], false , V* sizeof ( bool )); } } // A recursive DFS traversal function that finds // all reachable vertices for s. void Graph::DFSUtil( int s, int v) { // Mark reachability from s to t as true. tc[s][v] = true ; // Find all the vertices reachable through v list< int >::iterator i; for (i = adj[v].begin(); i != adj[v].end(); ++i) if (tc[s][*i] == false ) DFSUtil(s, *i); } // The function to find transitive closure. It uses // recursive DFSUtil() void Graph::transitiveClosure() { // Call the recursive helper function to print DFS // traversal starting from all vertices one by one for ( int i = 0; i < V; i++) DFSUtil(i, i); // Every vertex is reachable from self. for ( int i=0; i<V; i++) { for ( int j=0; j<V; j++) cout << tc[i][j] << " " ; cout << endl; } } // Driver code int main() { // Create a graph given in the above diagram Graph g(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); cout << "Transitive closure matrix is \n" ; g.transitiveClosure(); return 0; } |
Java
// JAVA program to print transitive // closure of a graph. import java.util.ArrayList; import java.util.Arrays; // A directed graph using // adjacency list representation public class Graph { // No. of vertices in graph private int vertices; // adjacency list private ArrayList<Integer>[] adjList; // To store transitive closure private int [][] tc; // Constructor public Graph( int vertices) { // initialise vertex count this .vertices = vertices; this .tc = new int [ this .vertices][ this .vertices]; // initialise adjacency list initAdjList(); } // utility method to initialise adjacency list @SuppressWarnings ( "unchecked" ) private void initAdjList() { adjList = new ArrayList[vertices]; for ( int i = 0 ; i < vertices; i++) { adjList[i] = new ArrayList<>(); } } // add edge from u to v public void addEdge( int u, int v) { // Add v to u's list. adjList[u].add(v); } // The function to find transitive // closure. It uses // recursive DFSUtil() public void transitiveClosure() { // Call the recursive helper // function to print DFS // traversal starting from all // vertices one by one for ( int i = 0 ; i < vertices; i++) { dfsUtil(i, i); } for ( int i = 0 ; i < vertices; i++) { System.out.println(Arrays.toString(tc[i])); } } // A recursive DFS traversal // function that finds // all reachable vertices for s private void dfsUtil( int s, int v) { // Mark reachability from // s to v as true. tc[s][v] = 1 ; // Find all the vertices reachable // through v for ( int adj : adjList[v]) { if (tc[s][adj]== 0 ) { dfsUtil(s, adj); } } } // Driver Code public static void main(String[] args) { // Create a graph given // in the above diagram Graph g = new Graph( 4 ); g.addEdge( 0 , 1 ); g.addEdge( 0 , 2 ); g.addEdge( 1 , 2 ); g.addEdge( 2 , 0 ); g.addEdge( 2 , 3 ); g.addEdge( 3 , 3 ); System.out.println( "Transitive closure " + "matrix is" ); g.transitiveClosure(); } } // This code is contributed // by Himanshu Shekhar |
Python
# Python program to print transitive closure of a graph from collections import defaultdict # This class represents a directed graph using adjacency # list representation class Graph: def __init__( self ,vertices): # No. of vertices self .V = vertices # default dictionary to store graph self .graph = defaultdict( list ) # To store transitive closure self .tc = [[ 0 for j in range ( self .V)] for i in range ( self .V)] # function to add an edge to graph def addEdge( self ,u,v): self .graph[u].append(v) # A recursive DFS traversal function that finds # all reachable vertices for s def DFSUtil( self ,s,v): # Mark reachability from s to v as true. self .tc[s][v] = 1 # Find all the vertices reachable through v for i in self .graph[v]: if self .tc[s][i] = = 0 : self .DFSUtil(s,i) # The function to find transitive closure. It uses # recursive DFSUtil() def transitiveClosure( self ): # Call the recursive helper function to print DFS # traversal starting from all vertices one by one for i in range ( self .V): self .DFSUtil(i, i) print self .tc # Create a graph given in the above diagram g = Graph( 4 ) g.addEdge( 0 , 1 ) g.addEdge( 0 , 2 ) g.addEdge( 1 , 2 ) g.addEdge( 2 , 0 ) g.addEdge( 2 , 3 ) g.addEdge( 3 , 3 ) print "Transitive closure matrix is" g.transitiveClosure(); # This code is contributed by Neelam Yadav |
C#
// C# program to print transitive // closure of a graph. using System; using System.Collections.Generic; // A directed graph using // adjacency list representation public class Graph { // No. of vertices in graph private int vertices; // adjacency list private List< int >[] adjList; // To store transitive closure private int [,] tc; // Constructor public Graph( int vertices) { // initialise vertex count this .vertices = vertices; this .tc = new int [ this .vertices, this .vertices]; // initialise adjacency list initAdjList(); } // utility method to initialise adjacency list private void initAdjList() { adjList = new List< int >[vertices]; for ( int i = 0; i < vertices; i++) { adjList[i] = new List< int >(); } } // add edge from u to v public void addEdge( int u, int v) { // Add v to u's list. adjList[u].Add(v); } // The function to find transitive // closure. It uses // recursive DFSUtil() public void transitiveClosure() { // Call the recursive helper // function to print DFS // traversal starting from all // vertices one by one for ( int i = 0; i < vertices; i++) { dfsUtil(i, i); } for ( int i = 0; i < vertices; i++) { for ( int j = 0; j < vertices; j++) Console.Write(tc[i, j] + " " ); Console.WriteLine(); } } // A recursive DFS traversal // function that finds // all reachable vertices for s private void dfsUtil( int s, int v) { // Mark reachability from // s to v as true. tc[s, v] = 1; // Find all the vertices reachable // through v foreach ( int adj in adjList[v]) { if (tc[s, adj] == 0) { dfsUtil(s, adj); } } } // Driver Code public static void Main(String[] args) { // Create a graph given // in the above diagram Graph g = new Graph(4); g.addEdge(0, 1); g.addEdge(0, 2); g.addEdge(1, 2); g.addEdge(2, 0); g.addEdge(2, 3); g.addEdge(3, 3); Console.WriteLine( "Transitive closure " + "matrix is" ); g.transitiveClosure(); } } // This code is contributed by Rajput-Ji |
Output:
Transitive closure matrix is 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
References:
http://www.cs.princeton.edu/courses/archive/spr03/cs226/lectures/digraph.4up.pdf
This article is contributed by Aditya Goel. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.