Open In App
Related Articles

Find the number of divisors of all numbers in the range [1, n]

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

Given an integer N. The task is to find the number of divisors of all the numbers in the range [1, N]

Examples: 

Input: N = 5 
Output: 1 2 2 3 2 
divisors(1) = 1 
divisors(2) = 1 and 2 
divisors(3) = 1 and 3 
divisors(4) = 1, 2 and 4 
divisors(5) = 1 and 5

Input: N = 10 
Output: 1 2 2 3 2 4 2 4 3 4 
 

Approach: Create an array arr[] of the size (N + 1) where arr[i] stores the number of divisors of i. Now for every j from the range [1, N], increment all the elements which are divisible by j
For example, if j = 3 then update arr[3], arr[6], arr[9], …

Below is the implementation of the above approach:  

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of divisors
// of all numbers in the range [1, n]
void findDivisors(int n)
{
 
    // Array to store the count
    // of divisors
    int div[n + 1];
    memset(div, 0, sizeof div);
 
    // For every number from 1 to n
    for (int i = 1; i <= n; i++) {
 
        // Increase divisors count for
        // every number divisible by i
        for (int j = 1; j * i <= n; j++)
            div[i * j]++;
    }
 
    // Print the divisors
    for (int i = 1; i <= n; i++)
        cout << div[i] << " ";
}
 
// Driver code
int main()
{
    int n = 10;
    findDivisors(n);
 
    return 0;
}

                    

Java

// Java implementation of the approach
 
class GFG
{
     
    // Function to find the number of divisors
    // of all numbers in the range [1, n]
    static void findDivisors(int n)
    {
     
        // Array to store the count
        // of divisors
        int[] div = new int[n + 1];
     
        // For every number from 1 to n
        for (int i = 1; i <= n; i++)
        {
     
            // Increase divisors count for
            // every number divisible by i
            for (int j = 1; j * i <= n; j++)
                div[i * j]++;
        }
     
        // Print the divisors
        for (int i = 1; i <= n; i++)
            System.out.print(div[i]+" ");
    }
     
    // Driver code
    public static void main(String args[])
    {
        int n = 10;
        findDivisors(n);
    }
}
 
// This code is contributed by Ryuga

                    

Python3

# Python3 implementation of the approach
# Function to find the number of divisors
# of all numbers in the range [1,n]
def findDivisors(n):
     
    # List to store the count
    # of divisors
    div = [0 for i in range(n + 1)]
     
    # For every number from 1 to n
    for i in range(1, n + 1):
         
        # Increase divisors count for
        # every number divisible by i
        for j in range(1, n + 1):
            if j * i <= n:
                div[i * j] += 1
 
    # Print the divisors
    for i in range(1, n + 1):
        print(div[i], end = " ")
 
# Driver Code
if __name__ == "__main__":
    n = 10
    findDivisors(n)
 
# This code is contributed by
# Vivek Kumar Singh

                    

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to find the number of divisors
// of all numbers in the range [1, n]
static void findDivisors(int n)
{
 
    // Array to store the count
    // of divisors
    int[] div = new int[n + 1];
 
    // For every number from 1 to n
    for (int i = 1; i <= n; i++)
    {
 
        // Increase divisors count for
        // every number divisible by i
        for (int j = 1; j * i <= n; j++)
            div[i * j]++;
    }
 
    // Print the divisors
    for (int i = 1; i <= n; i++)
        Console.Write(div[i]+" ");
}
 
// Driver code
static void Main()
{
    int n = 10;
    findDivisors(n);
}
}
 
// This code is contributed by mits

                    

PHP

<?php
// PHP implementation of the approach
 
// Function to find the number of divisors
// of all numbers in the range [1, n]
function findDivisors($n)
{
 
    // Array to store the count
    // of divisors
    $div = array_fill(0, $n + 2, 0);
     
    // For every number from 1 to n
    for ($i = 1; $i <= $n; $i++)
    {
 
        // Increase divisors count for
        // every number divisible by i
        for ($j = 1; $j * $i <= $n; $j++)
            $div[$i * $j]++;
    }
 
    // Print the divisors
    for ($i = 1; $i <= $n; $i++)
        echo $div[$i], " ";
}
 
// Driver code
$n = 10;
findDivisors($n);
 
// This code is contributed
// by Arnab Kundu
?>

                    

Javascript

<script>
 
// Javascript implementation of the approach
 
// Function to find the number of divisors
// of all numbers in the range [1, n]
function findDivisors(n)
{
 
    // Array to store the count
    // of divisors
    let div = new Array(n + 1).fill(0);
 
    // For every number from 1 to n
    for(let i = 1; i <= n; i++)
    {
         
        // Increase divisors count for
        // every number divisible by i
        for(let j = 1; j * i <= n; j++)
            div[i * j]++;
    }
 
    // Print the divisors
    for(let i = 1; i <= n; i++)
        document.write(div[i] + " ");
}
 
// Driver code
let n = 10;
findDivisors(n);
 
// This code is contributed by souravmahato348
 
</script>

                    

Output: 
1 2 2 3 2 4 2 4 3 4

 

Time Complexity: O(n3/2)
Auxiliary Space: O(n)



Last Updated : 08 Jun, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads