Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.
The tf.browser.fromPixelsAsync() function is used to create a Tensor of pixel values of a specified image in an async way.
Syntax:
tf.browser.fromPixelsAsync (pixels, numChannels)
Parameters: This function accepts two parameters which are illustrated below.
- pixels: It is the pixels of the input image from which the Tensor is going to be constructed. The supported image types are all 4-channel.
- numchannels: It is the number of channels of the output Tensor. It’s default value is 3 and the upper limit is up to 4.
Return Value: This function returns the created Tensor of pixels values of the specified image.
Example 1:
Javascript
const image = new ImageData(2, 2);
image.data[0] = 5;
image.data[1] = 10;
image.data[2] = 15;
image.data[3] = 20;
(await tf.browser.fromPixelsAsync(image)).print();
|
Output:
Tensor
[[[5, 10, 15],
[0, 0 , 0 ]],
[[0, 0 , 0 ],
[0, 0 , 0 ]]]
Example 2:
Javascript
const image = new ImageData(1, 1);
image.data[0] = 5;
image.data[1] = 10;
image.data[2] = 15;
image.data[3] = 20;
(await tf.browser.fromPixelsAsync(image, 4)).print();
|
Output:
Tensor
[ [[5, 10, 15, 20],]]
Reference:https://js.tensorflow.org/api/latest/#browser.fromPixelsAsync
Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape,
GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out -
check it out now!
Last Updated :
04 Dec, 2021
Like Article
Save Article