 GeeksforGeeks App
Open App Browser
Continue

# Tensorflow.js tf.metrics.precision() Function

Tensorflow.js is an open-source library developed by Google for running machine learning models as well as deep learning neural networks in the browser or node environment.

The .metrics.precision() function is used to calculate the precision of the expectancy with reference to the names.

Syntax:

`tf.metrics.precision(yTrue, yPred)`

Parameters:

• yTrue: It is the stated ground truth tensor which is supposed to hold values from 0 to 1 and it can be of type tf.Tensor.
• yPred: It is the stated prediction tensor which is supposed to hold values from 0 to 1 and it can be of type tf.Tensor.

Return Value: It returns the tf.Tensor object.

Example 1:

## Javascript

 `// Importing the tensorflow.js library``import * as tf from ``"@tensorflow/tfjs"`` ` `// Defining truth and prediction tensors``const y = tf.tensor2d([[0, 1], [1, 1]]);``const z = tf.tensor2d([[1, 0], [0, 1]]);`` ` `// Calling metrics.precision() method``const pre = tf.metrics.precision(y, z);`` ` `// Printing output``pre.print();`

Output:

```Tensor
0.5```

Example 2:

## Javascript

 `// Importing the tensorflow.js library``import * as tf from ``"@tensorflow/tfjs"`` ` `// Calling metrics.precision() method with``// its parameter directly and then ``// Printing output``const output = tf.metrics.precision(tf.tensor(``    ``[``      ``[0, 1, 0, 0],``      ``[0, 1, 1, 0],``      ``[0, 0, 0, 1],``      ``[1, 1, 0, 0],``      ``[0, 0, 1, 0]``    ``]``), tf.tensor(``    ``[``      ``[0, 0, 1, 1],``      ``[0, 1, 1, 0],``      ``[0, 0, 0, 1],``      ``[0, 1, 0, 1],``      ``[1, 1, 0, 0]``    ``]``)).print();`

Output:

```Tensor
0.4444444477558136```

My Personal Notes arrow_drop_up
Related Tutorials